Citation: Wu Shu-Ping, Dai Xiang-Zi, Kan Jia-Rui, Shilong Fang-Di, Zhu Mai-Yong. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater[J]. Chinese Chemical Letters, ;2017, 28(3): 625-632. doi: 10.1016/j.cclet.2016.11.015 shu

Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater

  • Corresponding author: Zhu Mai-Yong, maiyongzhu@ujs.edu.cn
  • Received Date: 8 September 2016
    Revised Date: 27 September 2016
    Accepted Date: 1 November 2016
    Available Online: 18 March 2016

Figures(8)

  • Carboxymethyl chitosan-hemicellulose resin (CMCH) was synthesized by thermal cross-linking process and characterized by FTIR, TGA, and SEM. Subsequently, the adsorption properties of CMCH toward Ni (Ⅱ), Cd (Ⅱ), Cu (Ⅱ), Hg (Ⅱ), Mn (Ⅶ) and Cr (Ⅵ) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time and the initial concentration of the metal ions were investigated. The results showed that all adsorption processes fit the pseudo-second-order model and Langmuir isotherm equation. Significantly, the regeneration experiments showed CMCH can be used as a potentially recyclable and effective adsorbent for the removal and recovery of metal ions from wastewater.
  • 加载中
    1. [1]

      Loganathan P., Vigneswaran S., Kandasamy J., Naidu R.. Defluoridation of drinking water using adsorption processes[J]. J. Hazard. Mater. 248-, 2013,249:1-19.  

    2. [2]

      Lofrano G., Carotenuto M., Libralato G.. Polymer functionalized nanocomposites for metals removal from water and wastewater:an overview[J]. Water Res., 2016,92:22-37. doi: 10.1016/j.watres.2016.01.033

    3. [3]

      Koedrith P., Kim H.L., Seo Y.R.. Integrative toxicogenomics-based approach to risk assessment of heavy metal mixtures/complexes:strategies and challenges[J]. Mol. Cell. Toxicol., 2015,11:265-276. doi: 10.1007/s13273-015-0026-2

    4. [4]

      Jackson L.W., Zullo M.D., Goldberg J.M.. The association between heavy metals, endometriosis and uterine myomas among premenopausal women:National Health and Nutrition Examination Survey 1999-2002[J]. Hum. Reprod., 2008,23:679-687. doi: 10.1093/humrep/dem394

    5. [5]

      Kang C.H., Kwon Y.J., So J.S.. Bioremediation of heavy metals by using bacterial mixtures[J]. Ecol. Eng., 2016,89:64-69. doi: 10.1016/j.ecoleng.2016.01.023

    6. [6]

      Han W.J., Fu F.L., Cheng Z.H., Tang B., Wu S.J.. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater[J]. J. Hazard. Mater., 2016,302:437-446. doi: 10.1016/j.jhazmat.2015.09.041

    7. [7]

      Ahamad T., Naushad M.. Inamuddin, Heavy metal ion-exchange kinetic studies over cellulose acetate Zr (Ⅳ) molybdophosphate composite cation-exchanger[J]. Desalin. Water. Treat., 2015,53:1675-1682. doi: 10.1080/19443994.2013.855676

    8. [8]

      Wu S.P., Hu J., Wei L.T.. Construction of porous chitosan-xylan-TiO2 hybrid with highly efficient sorption capability on heavy metals[J]. J. Environ. Chem. Eng., 2014,2:1568-1577. doi: 10.1016/j.jece.2014.07.001

    9. [9]

      Zhang H., Huang F., Liu D.L., Shi P.. Highly efficient removal of Cr (Ⅵ) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide[J]. Chin. Chem. Lett., 2015,26:1137-1143. doi: 10.1016/j.cclet.2015.05.026

    10. [10]

      Ahn K.H., Hong S.W.. Characteristics of the adsorbed heavy metals onto aerobic granules:isotherms and distributions[J]. Desalin. Water. Treat., 2015,53:2388-2402. doi: 10.1080/19443994.2014.927125

    11. [11]

      He Y.Q., Zhang N.N., Wang X.D.. Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chin. Chem. Lett., 2011,22:859-862. doi: 10.1016/j.cclet.2010.12.049

    12. [12]

      Rinaudo M.. Chitin and chitosan:properties and applications[J]. Prog. Polym. Sci., 2006,31:603-632. doi: 10.1016/j.progpolymsci.2006.06.001

    13. [13]

      Zinadini S., Zinatizadeh A.A., Rahimi M.. Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles[J]. Desalination, 2014,349:145-154. doi: 10.1016/j.desal.2014.07.007

    14. [14]

      Wang F.C., Zhao J.M., Zhou H.C.. O-carboxymethyl chitosan entrapped by silica:preparation and adsorption behaviour toward neodymium (Ⅲ) ions[J]. J. Chem. Technol. Biot., 2013,88:317-325. doi: 10.1002/jctb.2013.88.issue-2

    15. [15]

      Mäki-Arvela P., Salmi T., Holmbom B., Willför S., Murzin D.Y.. Synthesis of sugars by hydrolysis of hemicelluloses-a review[J]. Chem. Rev., 2011,111:5638-5666. doi: 10.1021/cr2000042

    16. [16]

      Ayoub A., Venditti R.A., Pawlak J.J., Salam A., Hubbe M.A.. Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal[J]. ACS Sustain. Chem. Eng., 2013,1:1102-1109. doi: 10.1021/sc300166m

    17. [17]

      Peng X.W., Zhong L.X., Ren J.L., Sun R.C.. Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicellulosesbased hydrogel[J]. J. Agric. Food Chem., 2012,60:3909-3916. doi: 10.1021/jf300387q

    18. [18]

      Li X.X., Shi X.W., Wang M.A., Du Y.M.. Xylan chitosan conjugate-a potential food preservative[J]. Food Chem., 2011,126:520-525. doi: 10.1016/j.foodchem.2010.11.037

    19. [19]

      Huang Y.C., Huang J.C., Cai J.H.. Carboxymethyl chitosan/clay nanocomposites and their copper complexes:fabrication and property[J]. Carbohydr. Polym., 2015,134:390-397. doi: 10.1016/j.carbpol.2015.07.089

    20. [20]

      Wang X.H., Du Y.M., Liu H.. Preparation, characterization and antimicrobial activity of chitosan-Zn complex[J]. Carbohydr. Polym., 2004,56:21-26. doi: 10.1016/j.carbpol.2003.11.007

    21. [21]

      Feng N.C., Guo X.Y., Liang S., Zhu Y.S., Liu J.P.. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel[J]. J. Hazard. Mater., 2011,185:49-54. doi: 10.1016/j.jhazmat.2010.08.114

    22. [22]

      Wang J.Q., Pan K., He Q.W., Cao B.. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution[J]. J. Hazard. Mater., 2013,244-245:121-129. doi: 10.1016/j.jhazmat.2012.11.020

    23. [23]

      Niu Y.Z., Qu R.J., Sun C.M.. Adsorption of Pb (Ⅱ) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers[J]. J. Hazard. Mater., 2013,244-245:276-286. doi: 10.1016/j.jhazmat.2012.11.042

    24. [24]

      Velghe I., Carleer R., Yperman J., Schreurs S., D'Haen J.. Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix[J]. Water Res., 2012,46:2783-2794. doi: 10.1016/j.watres.2012.02.034

    25. [25]

      Zhou S.Y., Xue A.L., Zhao Y.J.. Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite[J]. Desalination, 2011,270:269-274. doi: 10.1016/j.desal.2010.11.055

    26. [26]

      Yan H., Yang L.Y., Yang Z., Yang H., Li A.M., Cheng R.S.. Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (Ⅱ) ions from aqueous solutions[J]. J. Hazard. Mater., 2012,229-230:371-380. doi: 10.1016/j.jhazmat.2012.06.014

    27. [27]

      Badruddoza A.Z.M., Tay A.S.H., Tan P.Y., Hidajat K., Uddin M.S.. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions:synthesis and adsorption studies[J]. J. Hazard. Mater., 2011,185:1177-1186. doi: 10.1016/j.jhazmat.2010.10.029

    28. [28]

      Monier M., Abdel-Latif D.A.. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg (Ⅱ) Cd (Ⅱ) and Zn (Ⅱ) ions from aqueous solutions[J]. J. Hazard. Mater., 2012,209-210:240-249. doi: 10.1016/j.jhazmat.2012.01.015

    29. [29]

      Bahramzadeh A., Zahedi P., Abdouss M.. Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions[J]. J. Appl. Polym. Sci., 2016,13342944.  

    30. [30]

      Awual M.R.. A novel facial composite adsorbent for enhanced copper (Ⅱ) detection and removal from wastewater[J]. Chem. Eng. J., 2015,266:368-375. doi: 10.1016/j.cej.2014.12.094

    31. [31]

      Jovanovic M., Arcon I., Kovac J.. Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent[J]. Microporous Mesoporous Mater., 2016,226:378-385. doi: 10.1016/j.micromeso.2016.02.026

    32. [32]

      Kumari S., Chauhan G.S.. New cellulose-lysine Schiff-base-based sensoradsorbent for mercury ions[J]. ACS Appl. Mater. Interfaces, 2014,6:5908-5917. doi: 10.1021/am500820n

    33. [33]

      Dehghani M.H., Sanaei D., Ali I., Bhatnagar A.. Removal of chromium (Ⅵ) from aqueous solution using treated waste newspaper as a low-cost adsorbent:kinetic modeling and isotherm studies[J]. J. Mol. Liq., 2016,215:671-679. doi: 10.1016/j.molliq.2015.12.057

    34. [34]

      Yang F.C., Sun S.Q., Chen X.Q.. Mg-Al layered double hydroxides modified clay adsorbents for efficient removal of Pb2+, Cu2+ and Ni2+ from water[J]. Appl. Clay Sci., 2016,123:134-140. doi: 10.1016/j.clay.2016.01.026

    35. [35]

      Sharma N., Tiwari A.. Nanomagnetite-loaded poly (acrylamide-co-itaconic acid) hydrogel as adsorbent for effective removal of Mn2+ from contaminated water[J]. Desalin. Water Treat., 2016,57:5654-5672. doi: 10.1080/19443994.2015.1004117

    36. [36]

      Wu Y.H., Fan Y.A., Zhang M.L.. Functionalized agricultural biomass as a low-cost adsorbent:utilization of rice straw incorporated with amine groups for the adsorption of Cr (Ⅵ) and Ni (Ⅱ) from single and binary systems[J]. Biochem. Eng. J., 2016,105:27-35. doi: 10.1016/j.bej.2015.08.017

    37. [37]

      Mahdavi S.. Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2 Cu+2, and Ni+2 from water[J]. Clean Technol. Environ. Policy, 2016,18:81-94. doi: 10.1007/s10098-015-0993-y

    38. [38]

      Xu R., Zhou G.Y., Tang Y.H.. New double network hydrogel adsorbent:highly efficient removal of Cd (Ⅱ) and Mn (Ⅱ) ions in aqueous solution[J]. Chem. Eng. J., 2015,275:179-188. doi: 10.1016/j.cej.2015.04.040

    39. [39]

      Chen L.Y., Du Y.M., Zeng X.Q.. Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan Ⅱ. Effect of degree of deacetylation and carboxymethylation[J]. Carbohydr. Res., 2003,338:333-340. doi: 10.1016/S0008-6215(02)00462-7

    40. [40]

      Chen L.Y., Tian Z.G., Du Y.M.. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices[J]. Biomaterials, 2004,25:3725-3732. doi: 10.1016/j.biomaterials.2003.09.100

    41. [41]

      Bulut Y., Akçay G., Elma D., Serhatlı I.E.. Synthesis of clay-based superabsorbent composite and its sorption capability[J]. J. Hazard. Mater., 2009,171:717-723. doi: 10.1016/j.jhazmat.2009.06.067

  • 加载中
    1. [1]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    4. [4]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    7. [7]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    8. [8]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    9. [9]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    13. [13]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    19. [19]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    20. [20]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

Metrics
  • PDF Downloads(5)
  • Abstract views(733)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return