Citation: Nie Xin, Ning Xin, Zhao Ying-Ying, Yang Li-Zhu, Zhang Fan, He Pin-Gang. A fluorescent aptasensing strategy for adenosine triphosphate detection using tris (bipyridine) ruthenium (Ⅱ) complex containing six cyclodextrin units[J]. Chinese Chemical Letters, ;2017, 28(3): 619-624. doi: 10.1016/j.cclet.2016.11.013 shu

A fluorescent aptasensing strategy for adenosine triphosphate detection using tris (bipyridine) ruthenium (Ⅱ) complex containing six cyclodextrin units

  • Corresponding author: Zhang Fan, fzhang@chem.ecnu.edu.cn
  • Received Date: 8 August 2016
    Revised Date: 9 October 2016
    Accepted Date: 25 October 2016
    Available Online: 18 March 2016

Figures(7)

  • A sensitive label-free fluorescent aptasensing strategy for the detection of adenosine triphosphate (ATP) has been developed with a metallocyclodextrin, tris (bipyridine) ruthenium (Ⅱ) complex containing six cyclodextrin units (6CD-Ru), which exhibited much stronger emission signal compared to the parent compound Ru (bpy)3Cl2. Furthermore, the emission spectrum showed that the ATP-aptamer (ssDNA) could increase the fluorescence intensity of 6CD-Ru dramatically, attributed to the interaction between aptamer and cyclodextrin, which could provide protection to the ruthenium core from the quenching of emission by oxygen in the solution. With the addition of ATP, the interaction between aptamer and cyclodextrins on 6CD-Ru was diminished, since the ATP/aptamer complex had the priority to be formed, leading to the corresponding reduction of fluorescence intensity, which could be utilized to detect ATP quantitatively. A linear relationship was displayed between the fluorescence and the logarithm of ATP concentrations in the range from 1 nmol/L to 1 μmol/L with the detection limit of 0.5 nmol/L (S/N=3). The proposed fluorescent aptasensing strategy exhibited high sensitivity and specificity, without any labeling or amplification procedures, and it could also be applied for the detection of many other aptamer-specific targets.
  • 加载中
    1. [1]

      Zhou Z.X., Du Y., Dong S.J.. DNA-Ag nanoclusters as fluorescence probe for turnon aptamer sensor of small molecules[J]. Biosens. Bioelectron., 2011,28:33-37. doi: 10.1016/j.bios.2011.06.028

    2. [2]

      Huizenga D.E., Szostak J.W.. A DNA aptamer that binds adenosine and ATP[J]. Biochemistry, 1995,34:656-665. doi: 10.1021/bi00002a033

    3. [3]

      Erecińska M., Wilson D.F.. Regulation of cellular energy metabolism[J]. J. Membr. Biol., 1982,70:1-14. doi: 10.1007/BF01871584

    4. [4]

      Yang C.J., Jockusch S., Vicens M., Turro N.J., Tan W.H.. Light-switching excimer probes for rapid protein monitoring in complex biological fluids[J]. Proc. Natl. Acad. Sci. U. S. A., 2005,102:17278-17283. doi: 10.1073/pnas.0508821102

    5. [5]

      Zhang K., Wang K., Xie M.H.. A new method for the detection of adenosine based on time-resolved fluorescence sensor[J]. Biosens. Bioelectron., 2013,49:226-230. doi: 10.1016/j.bios.2013.05.030

    6. [6]

      Kong L., Xu J., Xu Y.Y.. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR green Idye[J]. Biosens. Bioelectron., 2013,42:193-197. doi: 10.1016/j.bios.2012.10.064

    7. [7]

      Wang L.Q., Li L.Y., Xu Y.. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation[J]. Talanta, 2009,79:557-561. doi: 10.1016/j.talanta.2009.05.034

    8. [8]

      Wang Y.Y., Liu B.. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene[J]. Analyst, 2008,133:1593-1598. doi: 10.1039/b806908e

    9. [9]

      Baker B.R., Lai R.Y., Wood M.S.. An electronic aptamer-based smallmolecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids[J]. J. Am. Chem. Soc., 2006,128:3138-3139. doi: 10.1021/ja056957p

    10. [10]

      Huang C.C., Chang H.T.. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine[J]. Chem. Commun., 2008,146:1461-1463.  

    11. [11]

      Mayer G., Ahmed M.S.L., Dolf A.. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures[J]. Nat. Protoc., 2010,5:1993-2004. doi: 10.1038/nprot.2010.163

    12. [12]

      Sefah K., Shangguan D.H., Xiong X.L., O'Donoghue M.B., Tan W.H.. Development of DNA aptamers using cell-SELEX[J]. Nat. Protoc., 2010,5:1169-1185. doi: 10.1038/nprot.2010.66

    13. [13]

      Tang Z.W., Mallikaratchy P., Yang R.H.. Aptamer switch probe based on intramolecular displacement[J]. J. Am. Chem. Soc., 2008,130:11268-11269. doi: 10.1021/ja804119s

    14. [14]

      Du Y., Li B.L., Wei H., Wang Y.L., Wang E.K.. Multifunctional label-free electrochemical biosensor based on an integrated aptamer[J]. Anal. Chem., 2008,80:5110-5117. doi: 10.1021/ac800303c

    15. [15]

      Liu F., Zhang J.A., Chen R., Chen L.L., Deng L.. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor[J]. Chem. Biodivers., 2011,8:311-316. doi: 10.1002/cbdv.v8.2

    16. [16]

      Huynh T.P., Pietrzyk-Le A., Bikram K.C.C.. Electrochemically synthesized molecularly imprinted polymer of thiophene derivatives for flow-injection analysis determination of adenosine-50-triphosphate (ATP)[J]. Biosens. Bioelectron., 2013,41:634-641. doi: 10.1016/j.bios.2012.09.038

    17. [17]

      Shi H.W., Wu M.S., Du Y., Xu J.J., Chen H.Y.. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells[J]. Biosens. Bioelectron., 2014,55:459-463. doi: 10.1016/j.bios.2013.12.045

    18. [18]

      Zhao Q., Geng X., Wang H.L.. Fluorescent sensing ochratoxin a with single fluorophore-labeled aptamer[J]. Anal. Bioanal. Chem., 2013,405:6281-6286. doi: 10.1007/s00216-013-7047-2

    19. [19]

      Li H.Y., Wang C.F., Gai P.P.. Unique quenching of fluorescent copper nanoclusters based on target-induced oxidation effect:a simple, label-free, highly sensitive and specific bleomycin assay[J]. RSC Adv., 2016,6:76679-76683. doi: 10.1039/C6RA09054K

    20. [20]

      Rekharsky M.V., Inoue Y.. Complexation thermodynamics of cyclodextrins[J]. Chem. Rev., 1998,98:1875-1918. doi: 10.1021/cr970015o

    21. [21]

      Song S.Z.. Functional significance of molecule-ion interactions between a series of inorganic salts and β-cyclodextrin[J]. Supramol. Chem., 2011,23:447-454. doi: 10.1080/10610278.2010.544737

    22. [22]

      Yana D., Takahashi T., Mihara H., Ueno A.. A peptide-cyclodextrin hybrid system capable of detecting guest molecules utilizing fluorescence resonance energy transfer[J]. Macromol. Rapid Commun., 2004,25:577-581. doi: 10.1002/(ISSN)1521-3927

    23. [23]

      Nakamura A., Imai T., Oda Y.. Charge separation in the non-covalent adducts of aromatic amines and the rhenium tricarbonyl complex bearing a cyclodextrin unit on a ligand[J]. J. Electroanal. Chem., 1997,438:159-165. doi: 10.1016/S0022-0728(96)05032-2

    24. [24]

      Haider J.M., Chavarot M., Weidner S.. Metallocyclodextrins as building blocks in noncovalent assemblies of photoactive units for the study of photoinduced intercomponent processes[J]. Inorg. Chem., 2001,40:3912-3921. doi: 10.1021/ic0100166

    25. [25]

      Haider J.M., Pikramenou Z.. Photoactive metallocyclodextrins:sophisticated supramolecular arrays for the construction of light activated miniature devices[J]. Chem. Soc. Rev., 2005,34:120-132. doi: 10.1039/b203904b

    26. [26]

      Corradini R., Dossena A., Galaverna G.. Fluorescent chemosensor for organic guests and copper (Ⅱ) ion based on dansyldiethylenetriaminemodified β-cyclodextrin[J]. J. Org. Chem., 1997,62:6283-6289. doi: 10.1021/jo970349d

    27. [27]

      Ueno A., Ikeda H., Ikeda T.. Fluorescent cyclodextrins responsive to molecules and metal ions. Fluorescence properties and inclusion phenomena of Nα-dansyl-L-lysine-β-cyclodextrin and monensin-incorporated Nα-dansyl-L-lysine-β-cyclodextrin[J]. J. Org. Chem., 1999,64:382-387. doi: 10.1021/jo9807870

    28. [28]

      Nelissen H.F.M., Schut A.F.J., Venema F.. Switch-on luminescence detection of steroids by tris (bipyridyl) ruthenium (Ⅱ) complexes containing multiple cyclodextrin binding sites[J]. Chem. Commun., 2000:577-578.  

    29. [29]

      Cline Ⅲ J.I., Dressick W.J., Demas J.N., DeGraff B.A.. β-Cyclodextrin inclusion complexes with α-diimine ruthenium (Ⅱ) photosensitizers[J]. J. Phys. Chem., 1985,89:94-97. doi: 10.1021/j100247a023

    30. [30]

      Vögtle F., Plevoets M., Nieger M.. Dendrimers with a photoactive and redox-active[Ru (bpy)3]2+-type core:photophysical properties, electrochemical behavior, and excited-state electron-transfer reactions[J]. J. Am. Chem. Soc., 1999,121:6290-6298. doi: 10.1021/ja990430t

    31. [31]

      Issberner J., Vögtle F., De Cola L., Balzani V.. Dendritic bipyridine ligands and their tris (bipyridine) ruthenium (Ⅱ) chelates-syntheses absorption spectra, and photophysical properties[J]. Chem. Eur. J., 1997,3:706-712. doi: 10.1002/(ISSN)1521-3765

    32. [32]

      Qi Y.T., Wang X.H., Chen H.. A family of metallocyclodextrins:synthesis, absorption and luminescence characteristic studies based on host-guest recognition[J]. Supramol. Chem., 2015,27:44-51. doi: 10.1080/10610278.2014.904867

    33. [33]

      Qi Y.T., Wang X.H., Chen H.. Luminescent multiruthenium metallocyclodextrins:synthesis, fluorescence and electrochemiluminescence properties based on host-guest recognition[J]. Inorg. Chem. Commun., 2014,40:11-14. doi: 10.1016/j.inoche.2013.10.037

    34. [34]

      Chen H., Wang X.H., Qi Y.T.. A tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin derivative:synthesis, luminescent properties, and application in electrochemiluminescence DNA sensors[J]. ChemPlusChem, 2013,78:780-784. doi: 10.1002/cplu.201300071

    35. [35]

      Chen Q., Chen H., Zhao Y.Y.. A label-free electrochemiluminescence aptasensor for thrombin detection based on host-guest recognition between tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin and aptamer[J]. Biosens. Bioelectron., 2014,54:547-552. doi: 10.1016/j.bios.2013.11.028

    36. [36]

      Zhao Y.Y., Chen H., Chen Q.. Ultrasensitive and signal-on electrochemiluminescence aptasensor using the multi-tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin complexes[J]. Chin. J. Chem., 2014,32:1161-1168. doi: 10.1002/cjoc.v32.11

    37. [37]

      Chen H., Chen Q., Zhao Y.Y.. Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between metallocyclodextrin complex and aptamer[J]. Talanta, 2014,121:229-233. doi: 10.1016/j.talanta.2013.12.039

    38. [38]

      Zhang F., Zhao Y.Y., Chen H.. Sensitive fluorescence detection of lysozyme using a tris (bipyridine) ruthenium (Ⅱ) complex containing multiple cyclodextrins[J]. Chem. Commun., 2015,51:6613-6616. doi: 10.1039/C5CC00428D

    39. [39]

      Spies M.A., Schowen R.L.. The trapping of a spontaneously "flipped-out" base from double helical nucleic acids by host-guest complexation with β-cyclodextrin:the intrinsic base-flipping rate constant for DNA and RNA[J]. J. Am. Chem. Soc., 2002,124:14049-14053. doi: 10.1021/ja012272n

    40. [40]

      Abbaspour A., Noori A.. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor[J]. Analyst, 2012,137:1860-1865. doi: 10.1039/c2an15683k

    41. [41]

      Görner H., Tossi A.B., Stradowski C., Schulte-Frohlinde D.. Binding of Ru (bpy)32+ and Ru (phen)32+ to polynucleotides and DNA:effect of added salts on the absorption and luminescence properties[J]. J. Photochem. Photobiol. B, 1988,2:67-89. doi: 10.1016/1011-1344(88)85038-3

    42. [42]

      Liu J.M., Yan X.P.. Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters[J]. Biosens. Bioelectron., 2012,36:135-141. doi: 10.1016/j.bios.2012.04.015

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    6. [6]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    7. [7]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    8. [8]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    9. [9]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    10. [10]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    11. [11]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    12. [12]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    15. [15]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    16. [16]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    19. [19]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    20. [20]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return