A fluorescent aptasensing strategy for adenosine triphosphate detection using tris (bipyridine) ruthenium (Ⅱ) complex containing six cyclodextrin units
- Corresponding author: Zhang Fan, fzhang@chem.ecnu.edu.cn
Citation: Nie Xin, Ning Xin, Zhao Ying-Ying, Yang Li-Zhu, Zhang Fan, He Pin-Gang. A fluorescent aptasensing strategy for adenosine triphosphate detection using tris (bipyridine) ruthenium (Ⅱ) complex containing six cyclodextrin units[J]. Chinese Chemical Letters, ;2017, 28(3): 619-624. doi: 10.1016/j.cclet.2016.11.013
Zhou Z.X., Du Y., Dong S.J.. DNA-Ag nanoclusters as fluorescence probe for turnon aptamer sensor of small molecules[J]. Biosens. Bioelectron., 2011,28:33-37. doi: 10.1016/j.bios.2011.06.028
Huizenga D.E., Szostak J.W.. A DNA aptamer that binds adenosine and ATP[J]. Biochemistry, 1995,34:656-665. doi: 10.1021/bi00002a033
Erecińska M., Wilson D.F.. Regulation of cellular energy metabolism[J]. J. Membr. Biol., 1982,70:1-14. doi: 10.1007/BF01871584
Yang C.J., Jockusch S., Vicens M., Turro N.J., Tan W.H.. Light-switching excimer probes for rapid protein monitoring in complex biological fluids[J]. Proc. Natl. Acad. Sci. U. S. A., 2005,102:17278-17283. doi: 10.1073/pnas.0508821102
Zhang K., Wang K., Xie M.H.. A new method for the detection of adenosine based on time-resolved fluorescence sensor[J]. Biosens. Bioelectron., 2013,49:226-230. doi: 10.1016/j.bios.2013.05.030
Kong L., Xu J., Xu Y.Y.. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR green Idye[J]. Biosens. Bioelectron., 2013,42:193-197. doi: 10.1016/j.bios.2012.10.064
Wang L.Q., Li L.Y., Xu Y.. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation[J]. Talanta, 2009,79:557-561. doi: 10.1016/j.talanta.2009.05.034
Wang Y.Y., Liu B.. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene[J]. Analyst, 2008,133:1593-1598. doi: 10.1039/b806908e
Baker B.R., Lai R.Y., Wood M.S.. An electronic aptamer-based smallmolecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids[J]. J. Am. Chem. Soc., 2006,128:3138-3139. doi: 10.1021/ja056957p
Huang C.C., Chang H.T.. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine[J]. Chem. Commun., 2008,146:1461-1463.
Mayer G., Ahmed M.S.L., Dolf A.. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures[J]. Nat. Protoc., 2010,5:1993-2004. doi: 10.1038/nprot.2010.163
Sefah K., Shangguan D.H., Xiong X.L., O'Donoghue M.B., Tan W.H.. Development of DNA aptamers using cell-SELEX[J]. Nat. Protoc., 2010,5:1169-1185. doi: 10.1038/nprot.2010.66
Tang Z.W., Mallikaratchy P., Yang R.H.. Aptamer switch probe based on intramolecular displacement[J]. J. Am. Chem. Soc., 2008,130:11268-11269. doi: 10.1021/ja804119s
Du Y., Li B.L., Wei H., Wang Y.L., Wang E.K.. Multifunctional label-free electrochemical biosensor based on an integrated aptamer[J]. Anal. Chem., 2008,80:5110-5117. doi: 10.1021/ac800303c
Liu F., Zhang J.A., Chen R., Chen L.L., Deng L.. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor[J]. Chem. Biodivers., 2011,8:311-316. doi: 10.1002/cbdv.v8.2
Huynh T.P., Pietrzyk-Le A., Bikram K.C.C.. Electrochemically synthesized molecularly imprinted polymer of thiophene derivatives for flow-injection analysis determination of adenosine-50-triphosphate (ATP)[J]. Biosens. Bioelectron., 2013,41:634-641. doi: 10.1016/j.bios.2012.09.038
Shi H.W., Wu M.S., Du Y., Xu J.J., Chen H.Y.. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells[J]. Biosens. Bioelectron., 2014,55:459-463. doi: 10.1016/j.bios.2013.12.045
Zhao Q., Geng X., Wang H.L.. Fluorescent sensing ochratoxin a with single fluorophore-labeled aptamer[J]. Anal. Bioanal. Chem., 2013,405:6281-6286. doi: 10.1007/s00216-013-7047-2
Li H.Y., Wang C.F., Gai P.P.. Unique quenching of fluorescent copper nanoclusters based on target-induced oxidation effect:a simple, label-free, highly sensitive and specific bleomycin assay[J]. RSC Adv., 2016,6:76679-76683. doi: 10.1039/C6RA09054K
Rekharsky M.V., Inoue Y.. Complexation thermodynamics of cyclodextrins[J]. Chem. Rev., 1998,98:1875-1918. doi: 10.1021/cr970015o
Song S.Z.. Functional significance of molecule-ion interactions between a series of inorganic salts and β-cyclodextrin[J]. Supramol. Chem., 2011,23:447-454. doi: 10.1080/10610278.2010.544737
Yana D., Takahashi T., Mihara H., Ueno A.. A peptide-cyclodextrin hybrid system capable of detecting guest molecules utilizing fluorescence resonance energy transfer[J]. Macromol. Rapid Commun., 2004,25:577-581. doi: 10.1002/(ISSN)1521-3927
Nakamura A., Imai T., Oda Y.. Charge separation in the non-covalent adducts of aromatic amines and the rhenium tricarbonyl complex bearing a cyclodextrin unit on a ligand[J]. J. Electroanal. Chem., 1997,438:159-165. doi: 10.1016/S0022-0728(96)05032-2
Haider J.M., Chavarot M., Weidner S.. Metallocyclodextrins as building blocks in noncovalent assemblies of photoactive units for the study of photoinduced intercomponent processes[J]. Inorg. Chem., 2001,40:3912-3921. doi: 10.1021/ic0100166
Haider J.M., Pikramenou Z.. Photoactive metallocyclodextrins:sophisticated supramolecular arrays for the construction of light activated miniature devices[J]. Chem. Soc. Rev., 2005,34:120-132. doi: 10.1039/b203904b
Corradini R., Dossena A., Galaverna G.. Fluorescent chemosensor for organic guests and copper (Ⅱ) ion based on dansyldiethylenetriaminemodified β-cyclodextrin[J]. J. Org. Chem., 1997,62:6283-6289. doi: 10.1021/jo970349d
Ueno A., Ikeda H., Ikeda T.. Fluorescent cyclodextrins responsive to molecules and metal ions. Fluorescence properties and inclusion phenomena of Nα-dansyl-L-lysine-β-cyclodextrin and monensin-incorporated Nα-dansyl-L-lysine-β-cyclodextrin[J]. J. Org. Chem., 1999,64:382-387. doi: 10.1021/jo9807870
Nelissen H.F.M., Schut A.F.J., Venema F.. Switch-on luminescence detection of steroids by tris (bipyridyl) ruthenium (Ⅱ) complexes containing multiple cyclodextrin binding sites[J]. Chem. Commun., 2000:577-578.
Cline Ⅲ J.I., Dressick W.J., Demas J.N., DeGraff B.A.. β-Cyclodextrin inclusion complexes with α-diimine ruthenium (Ⅱ) photosensitizers[J]. J. Phys. Chem., 1985,89:94-97. doi: 10.1021/j100247a023
Vögtle F., Plevoets M., Nieger M.. Dendrimers with a photoactive and redox-active[Ru (bpy)3]2+-type core:photophysical properties, electrochemical behavior, and excited-state electron-transfer reactions[J]. J. Am. Chem. Soc., 1999,121:6290-6298. doi: 10.1021/ja990430t
Issberner J., Vögtle F., De Cola L., Balzani V.. Dendritic bipyridine ligands and their tris (bipyridine) ruthenium (Ⅱ) chelates-syntheses absorption spectra, and photophysical properties[J]. Chem. Eur. J., 1997,3:706-712. doi: 10.1002/(ISSN)1521-3765
Qi Y.T., Wang X.H., Chen H.. A family of metallocyclodextrins:synthesis, absorption and luminescence characteristic studies based on host-guest recognition[J]. Supramol. Chem., 2015,27:44-51. doi: 10.1080/10610278.2014.904867
Qi Y.T., Wang X.H., Chen H.. Luminescent multiruthenium metallocyclodextrins:synthesis, fluorescence and electrochemiluminescence properties based on host-guest recognition[J]. Inorg. Chem. Commun., 2014,40:11-14. doi: 10.1016/j.inoche.2013.10.037
Chen H., Wang X.H., Qi Y.T.. A tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin derivative:synthesis, luminescent properties, and application in electrochemiluminescence DNA sensors[J]. ChemPlusChem, 2013,78:780-784. doi: 10.1002/cplu.201300071
Chen Q., Chen H., Zhao Y.Y.. A label-free electrochemiluminescence aptasensor for thrombin detection based on host-guest recognition between tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin and aptamer[J]. Biosens. Bioelectron., 2014,54:547-552. doi: 10.1016/j.bios.2013.11.028
Zhao Y.Y., Chen H., Chen Q.. Ultrasensitive and signal-on electrochemiluminescence aptasensor using the multi-tris (bipyridine) ruthenium (Ⅱ)-β-cyclodextrin complexes[J]. Chin. J. Chem., 2014,32:1161-1168. doi: 10.1002/cjoc.v32.11
Chen H., Chen Q., Zhao Y.Y.. Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between metallocyclodextrin complex and aptamer[J]. Talanta, 2014,121:229-233. doi: 10.1016/j.talanta.2013.12.039
Zhang F., Zhao Y.Y., Chen H.. Sensitive fluorescence detection of lysozyme using a tris (bipyridine) ruthenium (Ⅱ) complex containing multiple cyclodextrins[J]. Chem. Commun., 2015,51:6613-6616. doi: 10.1039/C5CC00428D
Spies M.A., Schowen R.L.. The trapping of a spontaneously "flipped-out" base from double helical nucleic acids by host-guest complexation with β-cyclodextrin:the intrinsic base-flipping rate constant for DNA and RNA[J]. J. Am. Chem. Soc., 2002,124:14049-14053. doi: 10.1021/ja012272n
Abbaspour A., Noori A.. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor[J]. Analyst, 2012,137:1860-1865. doi: 10.1039/c2an15683k
Görner H., Tossi A.B., Stradowski C., Schulte-Frohlinde D.. Binding of Ru (bpy)32+ and Ru (phen)32+ to polynucleotides and DNA:effect of added salts on the absorption and luminescence properties[J]. J. Photochem. Photobiol. B, 1988,2:67-89. doi: 10.1016/1011-1344(88)85038-3
Liu J.M., Yan X.P.. Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters[J]. Biosens. Bioelectron., 2012,36:135-141. doi: 10.1016/j.bios.2012.04.015
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Yu Xia , Yangming Jiang , Xin-Long Ni , Qiaochun Wang , Daoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541