Citation: Basha Mai A., Abd El-Rahman Mohamed K., Bebawy Lories I., Salem Maissa Y.. Novel potentiometric application for the determination of amprolium HCl in its single and combined dosage form and in chicken liver[J]. Chinese Chemical Letters, ;2017, 28(3): 612-618. doi: 10.1016/j.cclet.2016.11.012 shu

Novel potentiometric application for the determination of amprolium HCl in its single and combined dosage form and in chicken liver

  • Corresponding author: Basha Mai A., mamo1134@yahoo.com
  • Received Date: 27 July 2016
    Revised Date: 19 October 2016
    Accepted Date: 4 November 2016
    Available Online: 19 March 2016

Figures(7)

  • Three novel amprolium HCl (AMP)-selective electrodes were investigated with 2-nitrophenyl octylether as a plasticiser in a polymeric matrix of polyvinyl chloride (PVC). Sensor Ⅰ was fabricated using potassium tetrakis (4-chlorophenyl) borate (TpClPB) as a cationic exchanger without incorporation of an ionophore. Sensor Ⅱ used 2-hydroxy propyl β-cyclodextrin as an ionophore while sensor Ⅲ used p-tert-butylcalix[8] arene as an ionophore. The three proposed sensors showed Nernestian response slopes of 29.2±0.8, 29.3±0.6 and 30.2±0.4 mV/decade over the concentration range from 10-6 to 10-2 mol L-1, respectively. The proposed sensors displayed useful analytical characteristics for the determination of AMP in bulk powder, different pharmaceutical formulations, and chicken liver and in the presence of ethopabate. The proposed method was validated according to ICH guidelines for its linearity, accuracy, precision and robustness.
  • 加载中
    1. [1]

      M.J. O'Neil, The Merck Index:An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed., White House Station, NJ, USA, 2006.

    2. [2]

      A. El Nagar, A. Ibrahim, Case study of the Egyptian poultry sector, (2016). http://www.fao.org/events/docs.part1.

    3. [3]

      Veterinary Drug MRL Database, (2013) http://www.mrldatabase.com/results.cfm (Accessed 14.08.13).

    4. [4]

      British Pharmacopoeia Commission, British Pharmacopoeia (Volume Veterinary), Stationary Office, London, 2013.

    5. [5]

      Salama N.N., Fouad M.M., Rashed N.S.. Validated chromatographic methods for simultaneous determination of Amprolium hydrochloride and Ethopabate in veterinary preparation[J]. Int. J. Pharm. Biomed. Res., 2012,3:185-190.  

    6. [6]

      Martínez-Villalba A., Moyano E., Galceran M.T.. Analysis of amprolium by hydrophilic interaction liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A, 2010,1217:5802-5807. doi: 10.1016/j.chroma.2010.07.041

    7. [7]

      Hussein L.A., Magdy N., Abbas M.M.. Five different spectrophotometric methods for determination of Amprolium hydrochloride and Ethopabate binary mixture[J]. Spectrochim. Acta A, 2015,138:395-405. doi: 10.1016/j.saa.2014.11.073

    8. [8]

      El-Hawary W.F.. Determination of lignocaine and amprolium in pharmaceutical formulations using AAS[J]. J. Pharm. Biomed. Anal., 2002,27:97-105. doi: 10.1016/S0731-7085(01)00514-3

    9. [9]

      Issa Y.M., Rizk M.S., Shoukry A.F., Atia E.M.. Plastic membrane electrodes for amprolium[J]. Microchim. Acta, 1998,129:195-200. doi: 10.1007/BF01244741

    10. [10]

      Tan H.S.I., Ramachandran P., Cacini W.. High performance liquid chromatographic assay of amprolium and ethopabate in chicken feed using solid-phase extraction[J]. J. Pharm. Biomed. Anal., 1996,15:259-265. doi: 10.1016/0731-7085(96)01829-8

    11. [11]

      Hamamoto K., Koike R., Shirakura A., Sasaki A., Machida Y.. Rapid and sensitive determination of amprolium in chicken plasma by high-performance liquid chromatography with post-column reaction[J]. J. Chromatogr. B, 1997,693:489-492. doi: 10.1016/S0378-4347(97)00088-1

    12. [12]

      Hormazabal V., Yndestad M.. Rapid assay for the determination of residues of amprolium and ethopabate in chicken meat by HPLC[J]. J. Liq. Chromatogr. Relat. Technol., 1996,19:2517-2525. doi: 10.1080/10826079608014034

    13. [13]

      El-Kosasy A.M., Hussein L.A., Magdy N., Abbas M.M.. Sensitive spectrofluorimetric methods for determination of ethopabate and amprolium hydrochloride in chicken plasma and their residues in food samples[J]. Spectrochim. Acta A, 2015,150:430-439. doi: 10.1016/j.saa.2015.05.082

    14. [14]

      Moloney M., Clarke L., O'Mahony J.. Determination of 20 coccidiostats in egg and avian muscle tissue using ultra high performance liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A, 2012,1253:94-104. doi: 10.1016/j.chroma.2012.07.001

    15. [15]

      Chiaochan C., Koesukwiwat U., Yudthavorasit S., Leepipatpiboon N.. Efficient hydrophilic interaction liquid chromatography-tandem mass spectrometry for the multiclass analysis of veterinary drugs in chicken muscle[J]. Anal. Chim. Acta, 2010,682:117-129. doi: 10.1016/j.aca.2010.09.048

    16. [16]

      Squadrone S., Mauro C., Ferro G.L., Amato G., Abet M.C.. Determination of amprolium in feed by a liquid chromatography-mass spectrometry method[J]. J. Pharm. Biomed. Anal., 2008,48:1457-1461. doi: 10.1016/j.jpba.2008.09.024

    17. [17]

      Song W.L., Huang M., Rumbeiha W., Li H.. Determination of amprolium carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom., 2007,21:1944-1950. doi: 10.1002/(ISSN)1097-0231

    18. [18]

      Hormazábal V., Yndestad M., Ostensvik O.. Determination of amprolium ethopabate, lasalocid, monensin, narasin, and salinomycin in feed by liquid chromatography-mass spectrometry[J]. J. Liq. Chromtogr. Relat. Technol., 2002,25:2655-2663. doi: 10.1081/JLC-120014382

    19. [19]

      Hormazábal V., Yndestad M.. Determination of amprolium ethopabate, lasalocid, monensin, narasin, and salinomycin in chicken tissues, plasma, and egg using liquid chromatography-mass spectrometry[J]. J. Liq. Chromtogr. Relat. Technol., 2000,23:1585-1598. doi: 10.1081/JLC-100100437

    20. [20]

      Fink D.W., deFontenay G., Bonnefille P., Camarade M., Monier C.. Further studies on the spectrophotometric determination of amprolium[J]. J. AOAC Int., 2004,87:677-680.

    21. [21]

      Martínez-Villalba A., Núñez O., Moyano E., Galceran M.T.. Field amplified sample injection-capillary zone electrophoresis for the analysis of amprolium in eggs[J]. Electrophoresis, 2013,34:870-876. doi: 10.1002/elps.201200579

    22. [22]

      Gupta V.K., Jain R., Radhapyari K., Jadon N., Agarwal S.. Voltammetric techniques for the assay of pharmaceuticals-a review[J]. Anal. Biochem., 2011,408:179-196. doi: 10.1016/j.ab.2010.09.027

    23. [23]

      El-Rahman M.K.A., Zaazaa H.E., Badr ElDin N., Moustafa A.A.. Novel strategy for online monitoring of the degradation kinetics of propantheline bromide via a calixarene-based ion-selective electrode[J]. Talanta, 2015,132:52-58. doi: 10.1016/j.talanta.2014.08.068

    24. [24]

      El-Rahman M.K.A., Salem M.Y.. Ion selective electrode (in-line analyzer) versus UV-spectroscopy (at-line analyzer); which strategy offers more opportunities for real time monitoring of the degradation kinetics of pyridostigmine bromide[J]. Sens. Actuators B, 2015,220:255-262. doi: 10.1016/j.snb.2015.05.092

    25. [25]

      El-Rahman M.K.A., Rezk M.R., Mahmoud A.M., Elghobashy M.R.. Design of a stable solid-contact ion-selective electrode based on polyaniline nanoparticles as ion-to-electron transducer for application in process analytical technology as a real-time analyzer[J]. Sens. Actuators. B, 2015,208:14-21. doi: 10.1016/j.snb.2014.11.009

    26. [26]

      Mahmoud A.M., El-Rahman M.K.A., Elghobashy M.R., Rezk M.R.. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode[J]. J. Electroanal. Chem., 2015,755:122-126. doi: 10.1016/j.jelechem.2015.07.045

    27. [27]

      Mittal S.K., Kumar A., Gupta N., Kaur S., Kumar S.. 8-Hydroxyquinoline based neutral tripodal ionophore as a copper (Ⅱ) selective electrode and the effect of remote substitutents on electrode properties[J]. Anal. Chim. Acta, 2007,585:161-170. doi: 10.1016/j.aca.2006.12.011

    28. [28]

      Zanganeh A.R., Amini M.K.. Polypyrrole-modified electrodes with induced recognition sites for potentiometric and voltammetric detection of copper (Ⅱ) ion[J]. Sens. Actuators B, 2008,135:358-365. doi: 10.1016/j.snb.2008.09.005

    29. [29]

      Górski L., Matusevich A., Parzuchowski P., Łuciuk I., Malinowska E.. Fluorideselective polymeric membrane electrodes based on Zr (Ⅳ)-and Al (Ⅲ)-salen ionophores of various structures[J]. Anal. Chim. Acta, 2010,665:39-46. doi: 10.1016/j.aca.2010.03.021

    30. [30]

      Sideris E.E., Valsami G.N., Koupparis M.A., Macheras P.E.. Studies on the interaction of diflunisal ion with cyclodextrins using ion-selective electrode potentiometry[J]. Eur. J. Pharm. Sci., 1999,7:271-278. doi: 10.1016/S0928-0987(98)00035-9

    31. [31]

      Flink S., van Veggel F.C.J.M., Reinhoudt D.N.. Sensor functionalities in selfassembled monolayers[J]. Adv. Mater., 2000,12:1315-1328. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      E. Bakker, Y. Qin, Electrochemical sensors, Anal. Chem. 78(2006) 3965-3984.

    33. [33]

      El-Kosasy A.M., Nebsen M., El-Rahman M.K.A., Salem M.Y., El-Bardicy M.G.. Comparative study of 2-hydroxy propyl beta cyclodextrin and calixarene as ionophores in potentiometric ion-selective electrodes for neostigmine bromide[J]. Talanta, 2011,85:913-918. doi: 10.1016/j.talanta.2011.04.071

    34. [34]

      Zareh M.M., Malinowska E.. Phosphorated calix6arene derivatives as an ionophore for atropine-selective membrane electrodes[J]. J. AOAC Int., 2007,90:147-152.

    35. [35]

      Antoniadou-Vyza E., Buckton G., Michaleas S.G., Loukas Y.L., Efentakis M.. The formation of an inclusion complex of methocarbamol with hydroxypropyl-β-cyclodextrin:the effect on chemical stability, solubility and dissolution rate[J]. Int. J. Pharm., 1997,158:233-239. doi: 10.1016/S0378-5173(97)00258-5

    36. [36]

      Lindner E., Umezawa Y.. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC technical report)[J]. Pure Appl. Chem., 2008,80:85-104.  

    37. [37]

      Kaliappan R., Ling Y.H., Kaifer A.E., Ramamurthy V.. Sulfonatocalix[8] arene as a potential reaction cavity:photo-and electro-active dicationic guests arrest conformational equilibrium[J]. Langmuir, 2009,25:8982-8992. doi: 10.1021/la900659r

    38. [38]

      International Conference on Harmonization (ICH), Q2B:Validation of Analytical Procedures:Methodology, The European Agency for the Evaluation of Medicinal Products, Geneva, Switzerland, 1996.

    39. [39]

      Bakker E., Pretsch E.. Potentiometric sensors for trace-level analysis[J]. Trends Anal. Chem., 2005,24:199-207. doi: 10.1016/j.trac.2005.01.003

    40. [40]

      Baumann E.W.. Trace fluoride determination with specific ion electrode[J]. Anal. Chim. Acta, 1968,42:127-132. doi: 10.1016/S0003-2670(01)80277-4

  • 加载中
    1. [1]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    2. [2]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    3. [3]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    7. [7]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    8. [8]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    9. [9]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    10. [10]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    11. [11]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    12. [12]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    13. [13]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    14. [14]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    17. [17]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    18. [18]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    19. [19]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    20. [20]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

Metrics
  • PDF Downloads(1)
  • Abstract views(724)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return