Organic functional materials based buffer layers for efficient perovskite solar cells
- Corresponding author: Li Chang-Zhi, czli@zju.edu.cn
Citation:
Ullah Fateh, Chen Hongzheng, Li Chang-Zhi. Organic functional materials based buffer layers for efficient perovskite solar cells[J]. Chinese Chemical Letters,
;2017, 28(3): 503-511.
doi:
10.1016/j.cclet.2016.11.009
Tang C.W.. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48:183-185. doi: 10.1063/1.96937
Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J.. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995,270:1789-1791. doi: 10.1126/science.270.5243.1789
O'Regan B., Grätzel M.. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films[J]. Nature, 1991,353:737-740. doi: 10.1038/353737a0
Mathew S., Yella A., Gao P.. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014,6:242-247. doi: 10.1038/nchem.1861
You J.B., Dou L.T., Yoshimura K.. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commun., 2013,41446. doi: 10.1038/ncomms2411
Zhao J.B., Li Y.K., Yang G.F.. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nat. Energy, 2016,115027. doi: 10.1038/nenergy.2015.27
Zhao W.C., Qian D.P., Zhang S.Q.. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv. Mater., 2016,28:4734-4739. doi: 10.1002/adma.v28.23
Kojima A., Teshima K., Shirai Y., Miyasaka T.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r
Im J.H., Lee C.R., Lee J.W., Park S.W., Park N.G.. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011,3:4088-4093. doi: 10.1039/c1nr10867k
Kim H.S., Lee C.R., Im J.H.. Lead iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2591.
Zhang J., Hua Y., Xu B.. The role of 3D molecular structural control in new hole transport materials outperforming spiro-OMeTAD in perovskite solar cells[J]. Adv. Energy Mater., 2016,61601062. doi: 10.1002/aenm.201601062
Frost J.M., Walsh A.. What is moving in hybrid halide perovskite solar cells?[J]. Accounts Chem. Res., 2016,49:528-535. doi: 10.1021/acs.accounts.5b00431
Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604
Ball J.M., Lee M.M., Hey A., Snaith H.J.. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells[J]. Energy Environ. Sci., 2013,6:1739-1743. doi: 10.1039/c3ee40810h
Burschka J., Pellet N., Moon S.J.. Sequential deposition as a route to highperformance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340
Liu M.Z., Johnston M.B., Snaith H.J.. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501:395-398. doi: 10.1038/nature12509
Jeon N.J., Lee H.G., Kim Y.C.. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. Soc., 2014,136:7837-7840. doi: 10.1021/ja502824c
Park N.G.. Perovskite solar cells:an emerging photovoltaic technology[J]. Mater. Today, 2015,18:65-72. doi: 10.1016/j.mattod.2014.07.007
Zhou H.P., Chen Q., Li G.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050
Yang W.S., Noh J.H., Jeon N.J.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015,348:1234-1237. doi: 10.1126/science.aaa9272
Kim H., Lim K.G., Lee T.W.. Planar heterojunction organometal halide perovskite solar cells:roles of interfacial layers[J]. Energy Environ. Sci., 2016,9:12-30. doi: 10.1039/C5EE02194D
Li C.Z., Yip H.L., Jen A.K.Y.. Functional fullerenes for organic photovoltaics[J]. J. Mater. Chem., 2012,22:4161-4177. doi: 10.1039/c2jm15126j
Yip H.L., Jen A.K.Y.. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2012,5:5994-6011. doi: 10.1039/c2ee02806a
Chueh C.C., Li C.Z., Jen A.K.Y.. Recent progress and perspective in solutionprocessed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy Environ. Sci., 2015,8:1160-1189. doi: 10.1039/C4EE03824J
Dong Q.F., Fang Y.J., Shao Y.C.. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015,347:967-970. doi: 10.1126/science.aaa5760
Hou J.H., Chen H.Y., Zhang S.Q., Li G., Yang Y.. Synthesis characterization, and photovoltaic properties of a low band gap polymer based on silolecontaining polythiophenes and 2, 1, 3-benzothiadiazole[J]. J. Am. Chem. Soc., 2008,130:16144-16145. doi: 10.1021/ja806687u
Huang Z.T., Xue G.B., Wu J.K.. Electron transport in solution-grown TIPSpentacene single crystals:effects of gate dielectrics and polar impurities[J]. Chin. Chem. Lett., 2016. doi: 10.1016/j.cclet.2016.05.016(inpress)
Huang Z.T., Fan C.C., Xue G.B.. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules:rough surfaces and relatively low charge mobility[J]. Chin. Chem. Lett., 2016,27:523-526. doi: 10.1016/j.cclet.2016.01.054
Lin Q.Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P.. Electro-optics of perovskite solar cells[J]. Nat. Photonics, 2015,9:106-112.
Liu T.H., Chen K., Hu Q., Zhu R., Gong Q.H.. Inverted perovskite solar cells:progresses and perspectives[J]. Adv. Energy Mater., 2016,61600457. doi: 10.1002/aenm.v6.17
Blom P.W.M., Mihailetchi V.D., Koster L.J.A., Markov D.E.. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007,19:1551-1566. doi: 10.1002/(ISSN)1521-4095
Braun S., Salaneck W.R., Fahlman M.. Energy-level alignment at organic/metal and organic/organic interfaces[J]. Adv. Mater., 2009,21:1450-1472. doi: 10.1002/adma.v21:14/15
Potscavage Jr. W.J., Sharma A., Kippelen B.. Critical interfaces in organic solar cells and their influence on the open-circuit voltage[J]. Acc. Chem. Res., 2009,42:1758-1767. doi: 10.1021/ar900139v
Ratcliff E.L., Zacher B., Armstrong N.R.. Selective interlayers and contacts in organic photovoltaic cells[J]. J. Phys. Chem. Lett., 2011,2:1337-1350. doi: 10.1021/jz2002259
Huang C.Y., Fu W.F., Li C.Z.. Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138:2528-2531. doi: 10.1021/jacs.6b00039
Bi C., Wang Q., Shao Y.C.. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nat. Commun., 2015,67747. doi: 10.1038/ncomms8747
Werner A., Li F., Harada K.. n-Type doping of organic thin films using cationic dyes[J]. Adv. Funct. Mater., 2004,14:255-260. doi: 10.1002/(ISSN)1616-3028
Shao Y.C., Fang Y.J., Li T.. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films[J]. Energy Environ. Sci., 2016,9:1752-1759. doi: 10.1039/C6EE00413J
de Quilettes D.W., Vorpahl S.M., Stranks S.D.. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015,348:683-686. doi: 10.1126/science.aaa5333
Kan B., Li M.M., Zhang Q.. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency[J]. J. Am. Chem. Soc., 2015,137:3886-3893. doi: 10.1021/jacs.5b00305
Jeon N.J., Noh J.H., Yang W.S.. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133
Ryu S., Noh J.H., Jeon N.J.. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ. Sci., 2014,7:2614-2618. doi: 10.1039/C4EE00762J
Tong X., Lin F., Wu J., Wang Z.M.. High performance perovskite solar cells[J]. Adv. Sci., 2016,31500201. doi: 10.1002/advs.201500201
Susrutha B., Giribabu L., Singh S.P.. Recent advances in flexible perovskite solar cells[J]. Chem. Commun., 2015,51:14696-14707. doi: 10.1039/C5CC03666F
Liu D.Y., Kelly T.L.. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat. Photonics, 2014,8:133-138.
Huang F.Z., Dkhissi Y., Huang W.C.. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells[J]. Nano Energy, 2014,10:10-18. doi: 10.1016/j.nanoen.2014.08.015
Bi D., Tress W., Dar M.I.. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Sci. Adv., 2016,2e1501170. doi: 10.1126/sciadv.1501170
Liu T.H., Chen K., Hu Q.. Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells[J]. Chin. Chem. Lett., 2015,26:1518-1521. doi: 10.1016/j.cclet.2015.09.022
Saliba M., Matsui T., Seo J.Y.. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ. Sci., 2016,9:1989-1997. doi: 10.1039/C5EE03874J
Mun J.W., Cho I., Lee D.. Acetylene-bridged D-A-D type small molecule comprising pyrene and diketopyrrolopyrrole for high efficiency organic solar cells[J]. Org. Electron., 2013,14:2341-2347. doi: 10.1016/j.orgel.2013.05.035
Li H., Fu K., Hagfeldt A.. A simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed., 2014,53:4085-4088. doi: 10.1002/anie.201310877
Li H.R., Fu K.W., Boix P.P.. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells[J]. ChemSusChem, 2014,7:3420-3425. doi: 10.1002/cssc.v7.12
Do K., Choi H., Lim K.. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J]. Chem. Commun., 2014,50:10971-10974. doi: 10.1039/C4CC04550E
Saliba M., Orlandi S., Matsui T.. A molecularly engineered holetransporting material for efficient perovskite solar cells[J]. Nat. Energy, 2016,115017. doi: 10.1038/nenergy.2015.17
Wang Y.K., Yuan Z.C., Shi G.Z.. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv. Funct. Mater., 2016,26:1375-1381. doi: 10.1002/adfm.v26.9
Bi D.Q., Xu B., Gao P.. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%[J]. Nano Energy, 2016,23:138-144. doi: 10.1016/j.nanoen.2016.03.020
Molina-Ontoria A., Zimmermann I., Garcia-Benito I.. Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells[J]. Angew. Chem. Int. Ed., 2016,55:6270-6274. doi: 10.1002/anie.201511877
Xu B., Bi D.Q., Hua Y.. A low-cost spiro[J]. Energy Environ. Sci., 2016,9:873-877. doi: 10.1039/C6EE00056H
Malinauskas T., Saliba M., Matsui T.. Branched methoxydiphenylaminesubstituted fluorene derivatives as hole transporting materials for highperformance perovskite solar cells[J]. Energy Environ. Sci., 2016,9:1681-1686. doi: 10.1039/C5EE03911H
Choi H., Paek S., Lim N.. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors[J]. Chemistry, 2014,20:10894-10899. doi: 10.1002/chem.201403807
Choi H., Park S., Paek S.. Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell[J]. J. Mater. Chem. A, 2014,2:19136-19140. doi: 10.1039/C4TA04179H
Rakstys K., Abate A., Dar M.I.. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:16172-16178. doi: 10.1021/jacs.5b11076
Nishimura H., Ishida N., Shimazaki A.. Hole-transporting materials with a two-dimensionallyexpanded π-system around an azulenecoreforefficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008
Lv S.T., Han L.Y., Xiao J.Y.. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives[J]. Chem. Commun., 2014,50:6931-6934. doi: 10.1039/c4cc02211d
Song Y.K., Lv S.T., Liu X.C.. Energy level tuning of TPB-based holetransporting materials for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:15239-15242. doi: 10.1039/C4CC06493C
Eperon V.M., Burlakov P., Docampo A.. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv. Funct. Mater., 2014,24:151-157. doi: 10.1002/adfm.v24.1
Cheng M., Xu B., Chen C.. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv. Energy Mater., 2015,51401720. doi: 10.1002/aenm.201401720
Liu Y.S., Hong Z.R., Chen Q., al et. Perovskite solarcells employingdopant-free organic hole transport materials with tunable energy levels[J]. Adv. Mater., 2016,28:440-446. doi: 10.1002/adma.v28.3
Liu Y.S., Chen Q., Duan H.S.. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:11940-11947. doi: 10.1039/C5TA02502H
Reddy S.S., Gunasekar K., Heo J.H.. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J]. Adv. Mater., 2016,28:686-693. doi: 10.1002/adma.201503729
Hua Y., Xu B., Liu P.. High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors[J]. Chem. Sci., 2016,7:2633-2638. doi: 10.1039/C5SC03569D
Zhang J.B., Xu B., Johansson M.B.. Constructive effects of alkyl chains:a strategy to design simple and non-spiro hole transporting materials for highefficiency mixed-ion perovskite solar cells[J]. Adv. Energy Mater., 2016,61502536. doi: 10.1002/aenm.201502536
Zhang F., Yi C.Y., Wei P.. A novel dopant-free triphenylamine based molecular "butterfly" hole-transport material for highly efficient and stable perovskite solar cells[J]. Adv. Energy Mater., 2016,61600401. doi: 10.1002/aenm.201600401
Liang P.W., Liao C.Y., Chueh C.C.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv. Mater., 2014,26:3748-3754. doi: 10.1002/adma.v26.22
Malinkiewicz O., Yella A., Lee Y.H.. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photonics, 2014,8:128-132.
Sun S.Y., Salim T., Mathews N.. The origin of high efficiency in lowtemperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ. Sci., 2014,7:399-407. doi: 10.1039/C3EE43161D
Docampo P., Ball J.M., Darwich M., Eperon G.E., Snaith H.J.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nat. Commun., 2013,42761.
Xiao Z.G., Bi C., Shao Y.C.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ. Sci., 2014,7:2619-2623. doi: 10.1039/C4EE01138D
Nie W.Y., Tsai H., Asadpour R.. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472
Heo J.H., Han H.J., Kim D., Ahn T.K., Im S.H.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solarcells with 18.1% powerconversion efficiency[J]. Energy Environ. Sci., 2015,8:1602-1608. doi: 10.1039/C5EE00120J
Guo Y.L., Liu C., Inoue K.. Enhancement in the efficiency of an organicinorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer[J]. J. Mater. Chem. A, 2014,2:13827-13830. doi: 10.1039/C4TA02976C
Xue Q.F., Chen G.T., Liu M.Y.. Improving filmformation and photovoltage of highly efficient inverted-type perovskite solar cells through the incorporation of new polymeric hole selective layers[J]. Adv. Energy Mater., 2016,61502021. doi: 10.1002/aenm.201502021
Zhao D.W., Sexton M., Park H.Y.. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer[J]. Adv. Energy Mater., 2015,51401855. doi: 10.1002/aenm.201401855
Kim G.W., Kim J., Lee G.Y.. A strategy to design a donor-π-acceptor polymeric hole conductor for an efficient perovskite solar cell[J]. Adv. Energy Mater., 2015,51500471. doi: 10.1002/aenm.201500471
Jo J.W., Seo M.S., Park M.. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric holetransport material[J]. Adv. Funct. Mater., 2016,26:4464-4471. doi: 10.1002/adfm.v26.25
Jeon N.J., Lee J., Noh J.H.. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. J. Am. Chem. Soc., 2013,135:19087-19090. doi: 10.1021/ja410659k
Sung S.D., Kang M.S., Choi I.T.. 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials[J]. Chem. Commun., 2014,50:14161-14163. doi: 10.1039/C4CC06716A
Xue Q.F., Hu Z.C., Liu J.. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an aminofunctionalized polymer interlayer[J]. J. Mater. Chem. A, 2014,2:19598-19603. doi: 10.1039/C4TA05352D
Sun C., Wu Z.H., Yip H.L.. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planarheterojunction perovskite solar cells[J]. Adv. Energy Mater., 2016,61501534. doi: 10.1002/aenm.201501534
Zhao D.B., Zhu Z.L., Kuo M.Y., Chueh C.C., Jen A.K.Y.. Hexaazatrinaphthylene derivatives:efficient electron-transporting materials with tunable energy levels for inverted perovskite solar cells[J]. Angew. Chem. Int. Ed., 2016,55:8999-9003. doi: 10.1002/anie.201604399
Wojciechowski K., Leijtens T., Siprova S.. C60 as an efficient n-type compact layer in perovskite solar cells[J]. J. Phys. Chem. Lett., 2015,6:2399-2405. doi: 10.1021/acs.jpclett.5b00902
Zhu Z.L., Chueh C.C., Lin F., Jen A.K.Y.. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer[J]. Adv. Sci., 2016,3. doi: 10.1002/advs.201600027
Liang P.W., Chueh C.C., Williams S.T., Jen A.K.Y.. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thinfilm solar cells[J]. Adv. Energy Mater., 2015,5. doi: 10.1002/aenm.201402321
Grancini G., Santosh Kumar R.S., Abrusci A.. Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells[J]. Adv. Funct. Mater., 2012,22:2160-2166. doi: 10.1002/adfm.201102360
Wojciechowski K., Stranks S.D., Abate A.. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells[J]. ACS Nano, 2014,8:12701-12709. doi: 10.1021/nn505723h
Li C.Z., Huang J., Ju H.. Modulate organic-metal oxide heterojunction via[1, 6] azafulleroid for highly efficient organic solar cells[J]. Adv. Mater., 2016,28:7269-7275. doi: 10.1002/adma.201601161
Abrusci A., Stranks S.D., Docampo P.. High-performance perovskitepolymer hybrid solar cells via electronic coupling with fullerene monolayers[J]. Nano Lett., 2013,13:3124-3128. doi: 10.1021/nl401044q
Liu X.D., Lei M., Zhou Y., Song B., Li Y.F.. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers[J]. Appl. Phys. Lett., 2015,107063901. doi: 10.1063/1.4928535
Li Y.W., Zhao Y., Chen Q.. Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15540-15547. doi: 10.1021/jacs.5b10614
Li C.Z., Liang P.W., Sulas D.B.. Modulation of hybrid organic-perovskite photovoltaic performance by controlling the excited dynamics of fullerenes[J]. Mater. Horiz., 2015,2:414-419. doi: 10.1039/C5MH00026B
Yoon H., Kang S.M., Lee J.K., Choi M.. Hysteresis-free low-temperatureprocessed planar perovskite solar cells with 19.1% efficiency[J]. Energy Environ. Sci., 2016,9:2262-2266. doi: 10.1039/C6EE01037G
Shao S.Y., Abdu-Aguye M., Qiu L.. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative[J]. Energy Environ. Sci., 2016,9:2444-2452. doi: 10.1039/C6EE01337F
Anaraki E.H., Kermanpur A., Steier L.. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy Environ. Sci., 2016,9:3128-3134. doi: 10.1039/C6EE02390H
Li Y.B., Cooper J.K., Liu W.J.. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells[J]. Nat. Commun., 2016,712446. doi: 10.1038/ncomms12446
Giordano F., Abate A., Baena J.P.C.. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solarcells[J]. Nat. Commun., 2016,710379. doi: 10.1038/ncomms10379
Docampo P., Ball J.M., Darwich M., Eperon G.E., Snaith H.J.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nat. Commun., 2013,42761.
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Yinglan Yu , Sajid Hussain , Jianping Qi , Lei Luo , Xuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369