Citation: Chen Shu-Ying, Sun Zhi-Cheng, Li Lu-Hai, Xiao Yong-Hao, Yu Yan-Min. Preparation and characterization of conducting polymer-coated thermally expandable microspheres[J]. Chinese Chemical Letters, ;2017, 28(3): 658-662. doi: 10.1016/j.cclet.2016.11.005 shu

Preparation and characterization of conducting polymer-coated thermally expandable microspheres

  • Corresponding author: Sun Zhi-Cheng, sunzhicheng@bigc.edu.cn Yu Yan-Min, ymyu@bjut.edu.cn
  • Received Date: 2 September 2016
    Revised Date: 25 October 2016
    Accepted Date: 28 October 2016
    Available Online: 11 March 2016

Figures(7)

  • The thermally expandable microspheres (TEMs) were prepared via suspension polymerization with acrylonitrile (AN), methyl methacrylate (MMA) and methyl acrylate (MA) as monomers and n-hexane as the blowing agent. Meanwhile, a novel type of functional and conductive thermal expandable microsphere was obtained through strongly covering the surface of microsphere by conductive polymers with the mass loading of 1.5%. The optimal conditions to prepare high foaming ratio and equally distributed microcapsules were investigated with AN-MMA-MA in the proportion of 70%/20%/10% (m/m/m), and 25 wt% of n-hexane in oil phase. The further investigation results showed that the unexpanded TEMs were about 30 μm in diameter and the maximum expansion ratio was nearly 125 times of original volume. The polypyrrole (PPy) was smoothly coated on the surface of the TEMs and the expansion property of PPy-coated TEMs was almost the same as the uncoated TEMs. Moreover, the structure and expanding performance of TEMs and PPy-coated TEMs were characterized by scanning electron microscopy (SEM), laser particle size analyzer and dilatometer (DIL).
  • 加载中
    1. [1]

      Gouin S.. Microencapsulation:industrial appraisal of existing technologies and trends[J]. Trends Food Sci. Technol., 2004,15:330-347. doi: 10.1016/j.tifs.2003.10.005

    2. [2]

      S. Benita, Microencapsulation:Methods and Industrial Applications, 2nd ed., CRC Press, Boca Raton, 2005.

    3. [3]

      S.D. Morehouse Jr., Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same, U.S. Patent 3615972.

    4. [4]

      J.L. Garner, P.A. Tiffany, Method for expanding microspheres and expandable composition, U.S. Patent 4179546.

    5. [5]

      G.E. Melber, W.A. Oswald, L.E. Wolinski, Composition and process for drying and expanding microspheres, U.S. Patent 4722943.

    6. [6]

      H.S. Wu, F.M. Sun, V.L. Dimonie, A. Klein, Expandable hollow particles, U.S. Patent 583526.

    7. [7]

      L.O. Svedberg, G. Hovland, T. Holmlund, Method and expansion device for preparing expanded thermoplastic microspheres, U.S. Patent 7192989.

    8. [8]

      L.O. Svedberg, P. Ajdén, Method and a device for preparation of expanded microspheres, WIPO Patent Application WO/2014/198532.

    9. [9]

      Chen S.Y., Sun Z.C., Li L.H.. Preparation and characterization of thermally expandable microspheres[J]. Mater. Sci. Forum, 2016,852:596-600. doi: 10.4028/www.scientific.net/MSF.852

    10. [10]

      Hou Z.S., Kan C.Y.. Preparation and properties of thermoexpandable polymeric microspheres[J]. Chin. Chem. Lett., 2014,25:1279-1281. doi: 10.1016/j.cclet.2014.04.011

    11. [11]

      Jonsson M., Nordin O., Kron A.L., Malmström E.. Thermally expandable microspheres with excellent expansion characteristics at high temperature[J]. J. Appl. Polym. Sci., 2010,117:384-392.  

    12. [12]

      Fujino M., Taniguchi T., Kawaguchi Y., Ohshima M.. Mathematical models and numerical simulations of a thermally expandable microballoon for plastic foaming[J]. Chem. Eng. Sci., 2013,104:220-227. doi: 10.1016/j.ces.2013.09.010

    13. [13]

      Safajou-Jahankhanemlou M., Abbasi F., Salami-Kalajahi M.. Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density[J]. Colloid Polym. Sci., 2016,294:1055-1064. doi: 10.1007/s00396-016-3862-2

    14. [14]

      Jonsson M., Nordin O., Kron A.L., Malmström E.. Influence of crosslinking on the characteristics of thermally expandable microspheres expanding at high temperature[J]. J. Appl. Polym. Sci., 2010,118:1219-1229.  

    15. [15]

      Jonsson M., Nordin O., Malmström E.. Increased onset temperature ofexpansion in thermally expandable microspheres through combination of crosslinking agents[J]. J. Appl. Polym. Sci., 2011,121:369-375. doi: 10.1002/app.v121.1

    16. [16]

      Urbas R., Elesini U.S.. Color differences and perceptive properties of prints made with microcapsules[J]. J. Graph. Eng. Des., 2015,615.  

    17. [17]

      Jeong J.W., Mccall J.G., Shin G.. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics[J]. Cell, 2015,162:662-674. doi: 10.1016/j.cell.2015.06.058

    18. [18]

      Banea M.D., da Silva L.F.M., Carbas R.J.C., Campilho R.D.S.G.. Mechanical and thermal characterization of a structural polyurethane adhesive modified with thermally expandable particles[J]. Int. J. Adhes. Adhes., 2014,54:191-199. doi: 10.1016/j.ijadhadh.2014.06.008

    19. [19]

      Banea M.D., da Silva L.F.M., Carbas R.J.C.. Debonding on command of adhesive joints for the automotive industry[J]. Int. J. Adhes. Adhes., 2015,59:14-20. doi: 10.1016/j.ijadhadh.2015.01.014

    20. [20]

      Loomis J., Xu P., Panchapakesan B.. Stimuli-responsive transformation in carbon nanotube/expanding microsphere-polymer composites[J]. Nanotechnology, 2013,24185703. doi: 10.1088/0957-4484/24/18/185703

    21. [21]

      Wang L.J., Yang X., Zhang J., Zhang C., He L.. The compressive properties of expandable microspheres/epoxy foams[J]. Compos.Part B-Eng., 2014,56:724-732. doi: 10.1016/j.compositesb.2013.09.030

    22. [22]

      Jonsson M., Nyström D., Nordin O., Malmström E.. Surface modification of thermally expandable microspheres by grafting poly (glycidyl methacrylate) using ARGET ATRP[J]. Eur. Polym. J., 2009,45:2374-2382. doi: 10.1016/j.eurpolymj.2009.05.002

    23. [23]

      Lu Y.C., Broughton J., Winfield P.. Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive[J]. Int. J. Adhes. Adhes., 2016,66:33-40. doi: 10.1016/j.ijadhadh.2015.12.007

    24. [24]

      Yu S.Y., Li Y.C., Xiong T.. A ladder conjugated polymer transducer for solidcontact Cu2+-selective electrodes[J]. Chin. Chem. Lett., 2014,25:364-366. doi: 10.1016/j.cclet.2013.11.015

    25. [25]

      Hu X.Y., Liu Q.X., Ma D.. One-step synthesis of MnO2 doped poly (anilineco-o-aminophenol) and the capacitive behaviors of the conducting copolymer[J]. Chin. Chem. Lett., 2015,26:1367-1370. doi: 10.1016/j.cclet.2015.06.003

    26. [26]

      Yao Y.Y., Zhang L., Wang Z.F., Xu J.K., Wen Y.P.. Electrochemical determination of quercetin by self-assembled platinum nanoparticles/poly (hydroxymethylated-3, 4-ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode[J]. Chin. Chem. Lett., 2014,25:505-510. doi: 10.1016/j.cclet.2014.01.028

    27. [27]

      Huang M.R., Ding Y.B., Li X.G.. Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb (Ⅱ) sensors[J]. ACS Appl. Mater. Interfaces, 2014,6:22096-22107. doi: 10.1021/am505463f

    28. [28]

      Huang M.R., Lu H.J., Li X.G.. Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate[J]. J. Mater. Chem., 2012,22:17685-17699. doi: 10.1039/c2jm32361c

    29. [29]

      Li X.G., Feng H., Huang M.R., Gu G.L., Moloney M.G.. Ultrasensitive Pb (Ⅱ) potentiometric sensor based on copolyaniline nanoparticles in a plasticizerfree membrane with a long lifetime[J]. Anal. Chem., 2011,84:134-140.  

    30. [30]

      Li X.G., Liu R., Huang M.R.. Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers[J]. Chem. Mater., 2005,17:5411-5419. doi: 10.1021/cm050813s

    31. [31]

      Li X.G., Ma X.L., Sun J., Huang M.R.. Powerful reactive sorption of silver (Ⅰ) and mercury (Ⅱ) onto poly (o-phenylenediamine) microparticles[J]. Langmuir, 2009,25:1675-1684. doi: 10.1021/la802410p

    32. [32]

      Li X.G., Liao Y.Z., Huang M.R., Strong V., Kaner R.B.. Ultra-sensitive chemosensors for Fe (Ⅲ) and explosives based on highly fluorescent oligofluoranthene[J]. Chem. Sci., 2013,4:1970-1978. doi: 10.1039/c3sc22107e

    33. [33]

      Schmid A., Sutton L.R., Armes S.P., Bain P.S., Manfrè G.. Synthesis and evaluation of polypyrrole-coated thermally-expandable microspheres:an improved approach to reversible adhesion[J]. Soft Matter, 2009,5:407-412. doi: 10.1039/B811246K

    34. [34]

      Cingil H.E., Balmer J.A., Armes S.P., Bain P.S.. Conducting polymer-coated thermally expandable microspheres[J]. Polym. Chem., 2010,1:1323-1331. doi: 10.1039/c0py00108b

    35. [35]

      Vamvounis G., Jonsson M., Malmström E., Hult A.. Synthesis and properties of poly (3-n-dodecylthiophene) modified thermally expandable microspheres[J]. Eur. Polym. J., 2013,49:1503-1509. doi: 10.1016/j.eurpolymj.2013.01.010

    36. [36]

      Li X.G., Lü Q.F., Huang M.R.. Self-stabilized nanoparticles of intrinsically conducting copolymers from 5-sulfonic-2-anisidine[J]. Small, 2008,4:1201-1209. doi: 10.1002/smll.v4:8

    37. [37]

      Li X.G., Wei F., Huang M.R., Xie Y.B.. Facile synthesis and intrinsic conductivity of novel pyrrole copolymer nanoparticles with inherent self-stability[J]. J. Phys. Chem. B, 2007,111:5829-5836. doi: 10.1021/jp0710180

    38. [38]

      Li X.G., Hou Z.Z., Huang M.R., Moloney M.G.. Efficient synthesis of intrinsically conducting polypyrrole nanoparticles containing hydroxy sulfoaniline as key self-stabilized units[J]. J. Phys. Chem. C, 2009,113:21586-21595. doi: 10.1021/jp9081504

    39. [39]

      Li X.G., Li A., Huang M.R.. Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles[J]. J. Phys. Chem. C, 2010,114:19244-19255. doi: 10.1021/jp107435b

    40. [40]

      Jonsson M., Nordin O., Malmström E., Hammer C.. Suspension polymerization of thermally expandable core/shell particles[J]. Polymer, 2006,47:3315-3324. doi: 10.1016/j.polymer.2006.03.013

    41. [41]

      Hou Z.S., Xia Y.R., Qu W.Q., Kan C.Y.. Preparation and properties of thermoplastic expandable microspheres with P (VDC-AN-MMA) shell by suspension polymerization[J]. Int. J. Polym. Mater. Polym. Biomater., 2015,64:427-431. doi: 10.1080/00914037.2014.958831

    42. [42]

      Kim J.G., Ha J.U., Jeoung S.K.. Halloysite nanotubes as a stabilizer:fabrication of thermally expandable microcapsules via Pickering suspension polymerization[J]. Colloid Polym. Sci., 2015,293:3595-3602. doi: 10.1007/s00396-015-3731-4

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    4. [4]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    5. [5]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    6. [6]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    7. [7]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    8. [8]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    11. [11]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    18. [18]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return