Citation: Cui Qiu-Hong, Peng Lan, Lou Zhi-Dong, Hu Yu-Feng, Teng Feng. One-step synthesis of organic microwire-disk interconnected structure for miniaturized channel filters[J]. Chinese Chemical Letters, ;2017, 28(3): 563-568. doi: 10.1016/j.cclet.2016.11.004 shu

One-step synthesis of organic microwire-disk interconnected structure for miniaturized channel filters

  • Corresponding author: Cui Qiu-Hong, qhcui@bjtu.edu.cn Teng Feng, fteng@bjtu.edu.cn
  • Received Date: 8 August 2016
    Revised Date: 19 October 2016
    Accepted Date: 27 October 2016
    Available Online: 10 March 2016

Figures(7)

  • Miniaturized channel filters are in high demand for many applications such as photonic integrated circuits, information-based technology, and platforms for investigation of light-matter interactions. Recently, several photonic schemes have been proposed to achieve nanofilters, which require sophisticated growth techniques. Here, we have fabricated microdisk whispering-gallery-mode (WGM) resonators through controlled assembly of organic materials with an emulsion-solventevaporation method. Based on this emulsion assembly method, the diameters of microdisks can be easily controlled, and more importantly, a microwire-disk interconnected structure is able to be constructed via one-step assembly. This microwire-waveguide-connected microdisk heterostructure can be utilized as a channel drop filter. Our results have demonstrated a facile way to achieve flexible WGM-based photonic components which can be integrated with other functional devices.
  • 加载中
    1. [1]

      Absil P.P., Hryniewicz J.V., Little B.E.. Compact microring notch filters[J]. IEEE Photonics Technol. Lett., 2000,12:389-400. doi: 10.1109/68.839028

    2. [2]

      Little B.E., Chu S.T., Haus H.A., Foresi J., Laine J.P.. Microring resonator channel dropping filters[J]. J. Lightwave Technol., 1997,15:998-1005. doi: 10.1109/50.588673

    3. [3]

      Xia F., Rooks M., Sekaric L., Vlasov Y.. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects[J]. Opt. Express, 2007,15:11934-11941. doi: 10.1364/OE.15.011934

    4. [4]

      Takazawa K., Inoue J.I., Mitsuishi K.. Optical microring resonators constructed from organic dye nanofibers and their application to miniaturized channel drop/add filters[J]. ACS Appl. Mater. Interface, 2013,5:6182-6188. doi: 10.1021/am4011379

    5. [5]

      Little B.E., Chu S.T., Absil P.P.. Very high-order microring resonator filters for WDM applications[J]. IEEE Photonics Technol. Lett., 2004,16:2263-2265. doi: 10.1109/LPT.2004.834525

    6. [6]

      Srivastava A., Srivastava O.N., Talapatra S., Vajtai R., Ajayan P.M.. Carbon nanotube filters[J]. Nat. Mater, 2004,3:610-614. doi: 10.1038/nmat1192

    7. [7]

      Humar M., Ravnik M., Pajk S., Musevic I.. Electrically tunable liquid crystal optical microresonators[J]. Nat. Photonics, 2009,3:595-600. doi: 10.1038/nphoton.2009.170

    8. [8]

      Tang S.K.Y., Derda R., Quan Q., Loncar M., Whitesides G.M.. Continuously tunable microdroplet-laser in a microfluidic channel[J]. Opt. Express, 2011,19:2204-2215. doi: 10.1364/OE.19.002204

    9. [9]

      Lin H.B., Huston A.L., Justus B.L., Campillo A.J.. Some characteristics of a droplet whispering-gallery-mode laser[J]. Opt. Express, 1986,11:614-616.

    10. [10]

      Qian S.X., Snow J.B., Tzeng H.M., Chang R.K.. Lasing droplets:highlighting the liquid-air interface by laser emission[J]. Science, 1986,231:486-488. doi: 10.1126/science.231.4737.486

    11. [11]

      Schäfer J., Mondia J.P., Sharma R.. Quantum dot microdrop laser[J]. Nano Lett, 1709,8:1709-1712.

    12. [12]

      Zhang C., Zou C.L., Yan Y.. Self-assembled organic crystalline microrings as active whispering-gallery-mode optical resonators[J]. Adv. Opt. Mater., 2013,1:357-361. doi: 10.1002/adom.v1.5

    13. [13]

      Pauzauskie P.J., Sirbuly D.J., Yang P.. Semiconductor nanowire ring resonator laser[J]. Phys. Rev. Lett, 2006,96143903. doi: 10.1103/PhysRevLett.96.143903

    14. [14]

      Ma R.M., Wei X.L., Dai L.. Light coupling and modulation in coupled nanowire ring-fabry-pérot cavity[J]. Nano Lett., 2009,9:2697-2703. doi: 10.1021/nl901190v

    15. [15]

      Takazawa K., Inoue J.I., Mitsuishi K., Takamasu T.. Micrometer-scale photonic circuit components based on propagation of exciton polaritons in organic dye nanofibers[J]. Adv. Mater., 2011,23:3659-3663. doi: 10.1002/adma.v23.32

    16. [16]

      Baek H., Lee C.H., Chung K., Yi G.C.. Epitaxial GaN microdisk lasers grown on graphene microdots[J]. Nano Lett., 2013,13:2782-2785. doi: 10.1021/nl401011x

    17. [17]

      Chen R., Gupta S., Huang Y.C.. Demonstration of a Ge/GeSn/Ge quantumwell microdisk resonator on silicon:enabling high-quality Ge (Sn) materials for micro-and nanophotonics[J]. Nano Lett., 2014,14:37-43. doi: 10.1021/nl402815v

    18. [18]

      Clark A.W., Glidle A., Cumming D.R.S., Cooper J.M.. Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors[J]. J. Am. Chem. Soc., 2009,131:17615-17619. doi: 10.1021/ja905910q

    19. [19]

      Armani D.K., Kippenberg T.J., Spillane S.M., Vahala K.J.. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003,421:925-928. doi: 10.1038/nature01371

    20. [20]

      Mahler L., Tredicucci A., Beltram F.. Vertically emitting microdisk lasers[J]. Nat. Photonics, 2009,3:46-49. doi: 10.1038/nphoton.2008.248

    21. [21]

      Chandrasekar R.. Organic photonics:prospective nano/micro scale passive organic optical waveguides obtained from π-conjugated ligand molecules[J]. Phys. Chem. Chem. Phys., 2014,16:7173-7183. doi: 10.1039/c3cp54994a

    22. [22]

      Yan Y., Zhao Y.S.. Organic nanophotonics:from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties[J]. Chem. Soc. Rev., 2014,43:4325-4340. doi: 10.1039/c4cs00098f

    23. [23]

      Basak S., Chandrasekar R.. Passive optical waveguiding organic rectangular tubes:tube cutting, controlling light propagation distance and multiple optical out-puts[J]. J. Mater. Chem. C, 2014,2:1404-1408. doi: 10.1039/c3tc31576b

    24. [24]

      Zhang Q., Ha S.T., Liu X., Sum T.C., Xiong Q.. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Lett., 2014,14:5995-6001. doi: 10.1021/nl503057g

    25. [25]

      Ta V.D., Chen R., Sun H.D.. Self-assembled flexible microlasers[J]. Adv. Mater, 2012,24:OP60-OP64.

    26. [26]

      Chandrasekhar N., Chandrasekar R.. Reversibly shape-shifting organic optical waveguides:formation of organic nanorings, nanotubes, and nanosheets[J]. Angew. Chem. Int. Ed., 2012,51:3556-3561. doi: 10.1002/anie.v51.15

    27. [27]

      Cui Q.H., Zhao Y.S., Yao J.. Photonic applications of one-dimensional organic single-crystalline nanostructures:optical waveguides and optically pumped lasers[J]. J. Mater. Chem., 2012,22:4136-4140. doi: 10.1039/C1JM14721H

    28. [28]

      Cui Q.H., Zhao Y.S., Yao J.. Controlled synthesis of organic nanophotonic materials with specific structures and compositions[J]. Adv. Mater., 2014,26:6852-6870. doi: 10.1002/adma.v26.40

    29. [29]

      Cerdan L., Enciso E., Martin V.. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles[J]. Nat. Photonics, 2012,6:621-626.

    30. [30]

      Wei C., Liu S.Y., Zou C.L.. Controlled self-assembly of organic composite microdisks for efficient output coupling of whispering-gallery-mode lasers[J]. J. Am. Chem. Soc., 2014,137:62-65.

    31. [31]

      Deng R., Liu S., Li J.. Mesoporous block copolymer nanoparticles with tailored atructures by hydrogen-bonding-assisted self-assembly[J]. Adv. Mater., 2012,24:1889-1893. doi: 10.1002/adma.v24.14

    32. [32]

      Adachi T., Tong L., Kuwabara J.. Spherical assemblies from π-conjugated alternating copolymers:toward optoelectronic colloidal crystals[J]. J. Am. Chem. Soc., 2013,135:870-876. doi: 10.1021/ja3106626

    33. [33]

      Wang H., Liao Q., Fu H.. Ir (ppy)3 phosphorescent microrods and nanowires:promising micro-phosphors[J]. J. Mater. Chem., 2009,19:89-96. doi: 10.1039/B814007C

    34. [34]

      Li Y.J., Yan Y., Zhang C., Zhao Y.S., Yao J.. Embedded branch-like organic/metal nanowire heterostructures:liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation[J]. Adv. Mater., 2013,25:2784-2788. doi: 10.1002/adma.201203829

    35. [35]

      Zheng J.Y., Yan Y., Wang X.. Wire-on-wire growth of fluorescent organic heterojunctions[J]. J. Am. Chem. Soc., 2012,134:2880-2883. doi: 10.1021/ja209815f

    36. [36]

      Chikkaraddy R., Dasgupta A., Dutta Gupta S., Pavan Kumar G.V.. Microspherecoupled organic waveguides:preparation, remote excitation of whispering gallery modes and waveguiding property[J]. Appl. Phys. Lett, 2013,103031112. doi: 10.1063/1.4813917

  • 加载中
    1. [1]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return