Citation: Wu Zhi-Meng, Liu Shao-Zhong, Cheng Xiao-Zhong, Zhao Xin-Rui, Hong Hao-Fei. High yield synthesis of cyclic analogues of antibacterial peptides P-113 by Sortase A-mediated ligation and their conformation studies[J]. Chinese Chemical Letters, ;2017, 28(3): 553-557. doi: 10.1016/j.cclet.2016.11.001 shu

High yield synthesis of cyclic analogues of antibacterial peptides P-113 by Sortase A-mediated ligation and their conformation studies

  • Corresponding author: Wu Zhi-Meng, zwu@jiangnan.edu.cn
  • Received Date: 29 July 2016
    Revised Date: 30 September 2016
    Accepted Date: 9 October 2016
    Available Online: 10 March 2016

Figures(5)

  • P-113 is a fragment of natural occurring peptide Histatin 5 found in human saliva. This peptide exhibited broad spectrum of antibacterial and antifungal biological activities. In this study, bifunctional P-113 peptides 2-5 were designed as Sortase A substrates and synthesized by solid support peptide synthesis, where the N-terminus were equipped with glycine and its analogues, and C-terminus were extended with LPETGGS, respectively. Under Sortase A catalyzed condition, head to tail cyclization products 7-10 were afforded in yields from 76% to 93%. The conformation insights of linear peptides 2-5 and cyclic analogues 7-10 in aqueous buffers and in trifluroethanol (TFE) analyzed by circular dichroism (CD) suggested that α-helix structures were produced progressively in hydrophobic environment independent of the cyclization, which displayed the similar behavior as parent peptide P-113.
  • 加载中
    1. [1]

      Oppenheim F.G., Yang Y.C., Diamond R.D.. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion[J]. J. Biol. Chem., 1986,261:1177-1182.

    2. [2]

      (a) J.J. Pollock, J. Shoda, T.F. McNamara, et al., In vitro and in vivo studies of cellular lysis of oral bacteria by a lysozyme-protease-inorganic monovalent anion antibacterial system, Infect. Immun. 45(1984) 610-617;
      (b) E.J. Helmerhorst, I.M. Reijnders, W. van't Hof, et al., Amphotericin B-and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides, Antimicrob. Agents Chemother. 43(1999) 702-704;
      (c) I. Čipáková, E. Hostinová, Mammalian antimicrobial peptides, Biologia 58(2003) 335-341;
      (d) M.D. Seo, H.S. Won, J.H. Kim, et al., Antimicrobial peptides for therapeutic applications:a review, Molecules 17(2012) 12276-12286.

    3. [3]

      (a) S. Melino, C. Santone, P. Di Nardo, et al., Histatins:salivary peptides with copper (Ⅱ)-and zinc (Ⅱ)-binding motifs:perspectives for biomedical applications, FEBS J. 281(2014) 657-672;
      (b) S. Puri, R. Li, D. Ruszaj, et al., Iron binding modulates candidacidal properties of salivary histatin 5, J. Dent. Res. 94(2015) 201-208.

    4. [4]

      Di Giampaolo A., Luzi C., Casciaro B.. P-113 peptide:new experimental evidences on its biological activity and conformational insights from molecular dynamics simulations[J]. Biopolymers, 2014,102:159-167. doi: 10.1002/bip.v102.2

    5. [5]

      (a) P. Spacciapoli, L. Tran, F.D. Roberts, et al., Characterization of the antimicrobial spectrum of the histatin peptide P-113, J. Dent. Res. 76(1997) 2736;
      (b) L.T. Tran, P. Spacciapoli, P.M. Friden, et al., The antimicrobial peptide P-113 has potent activity against Candida species, J. Dent. Res. 79(2000) 152;
      (c) D.M. Rothstein, P. Spacciapoli, L.T. Tran, et al., Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5, Antimicrob. Agents Chemother. 45(2001) 1367-1373;
      (d) K. Kulon, D. Valensin, W. Kamysz, et al., The his-his sequence of the antimicrobial peptide demegen P-113 makes it very attractive ligand for Cu2+, J. Inorg. Biochem. 102(2008) 960-972;
      (e) W.C. Cheng, G. Lin, H. Chen, et al., Development of P-113-derived peptides as novel inhibitors for drug-resistant Candida spp. and biofilm formation, Mycoses 58(2015) 81-82.

    6. [6]

      (a) P.R. Chaturvedi, C.J. Decker, A. Odinecs, Prediction of pharmacokinetic properties using experimental approaches during early drug discovery, Curr. Opin. Chem. Biol. 5(2001) 452-463;
      (b) O. Pelkonen, M. Turpeinen, J. Uusitalo, et al., Prediction of drug metabolism and interactions on the basis of in vitro investigations, Basic Clin. Pharmacol. 96(2005) 167-175.

    7. [7]

      (a) M. Werle, A. Bernkop-Schnurch, Strategies to improve plasma half life time of peptide and protein drugs, Amino Acids 30(2006) 351-367;
      (b) A. Bhat, L.R. Roberts, J.J. Dwyer, Lead discovery and optimization strategies for peptide macrocycles, Eur. J. Med. Chem. 94(2015) 471-479;
      (c) C.M. Zhang, J.X. Guo, L. Wang, et al., Total synthesis of cyclic heptapeptide euryjanicin B, Chin. Chem. Lett. 22(2011) 631-634.

    8. [8]

      (a) T.A. Hill, N.E. Shepherd, F. Diness, et al., Constraining cyclic peptides to mimic protein structure motifs, Angew. Chem. Int. Ed. 53(2014) 13020-13041;
      (b) H. Wahyudi, S.R. McAlpine, Predicting the unpredictable:recent structureactivity studies on peptide-based macrocycles, Bioorg. Chem. 60(2015) 74-97;
      (c) H. Karatas, S.Y. Lee, E.C. Townsend, et al., Structure-based design of conformationally constrained cyclic peptidomimetics to target the MLL1-WDR5 protein-protein interaction as inhibitors of the MLL1 methyltransferase activity, Chin. Chem. Lett. 26(2015) 455-458.

    9. [9]

      Mazmanian S.K., Liu G., Ton-That H.. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall[J]. Science, 1999,285:760-763. doi: 10.1126/science.285.5428.760

    10. [10]

      Ton-That H., Mazmanian S.K., Alksne L.. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis[J]. J. Biol. Chem., 2002,277:7447-7452. doi: 10.1074/jbc.M109945200

    11. [11]

      (a) H.Y. Mao, S.A. Hart, A. Schink, et al., Sortase-mediated protein ligation:a new method for protein engineering, J. Am. Chem. Soc. 126(2004) 2670-2671;
      (b) J.M. Antos, G.M. Miller, G.M. Grotenbreg, et al., Lipid modification of proteins through Sortase-catalyzed transpeptidation, J. Am. Chem. Soc. 130(2008) 16338-16343.

    12. [12]

      Antos J.M., Chew G.L., Guimaraes C.P.. Site-specific N-and C-terminal labeling of a single polypeptide using Sortases of different specificity[J]. J. Am. Chem. Soc., 2009,131:10800-10802. doi: 10.1021/ja902681k

    13. [13]

      Ito T., Sadamoto R., Naruchi K.. Highly oriented recombinant glycosyltransferases:site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus Sortase A[J]. Biochemistry, 2010,49:2604-2614. doi: 10.1021/bi100094g

    14. [14]

      (a) S. Samantaray, U. Marathe, S. Dasgupta, et al., Peptide-sugar ligation catalyzed by transpeptidase sortase:a facile approach to neoglycoconjugate synthesis, J. Am. Chem. Soc. 130(2008) 2132-2133;
      (b) Z.M. Wu, X.Q. Guo, Q.L. Wang, et al., Sortase A-catalyzed transpeptidation of glycosylphosphatidylinositol derivatives for chemoenzymatic synthesis of GPI-anchored proteins, J. Am. Chem. Soc. 132(2010) 1567-1571;
      (c) Z.M. Wu, X.Q. Guo, J. Gao, et al., Sortase A-mediated chemoenzymatic synthesis of complex glycosylphosphatidylinositol-anchored protein, Chem. Commun. 49(2013) 11689-11691;
      (d) Z.M. Wu, X.Q. Guo, G.F. Gu, et al., Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues, Org. Lett. 15(2013) 5906-5908.

    15. [15]

      (a) J.M. Antos, M.W.L. Popp, R. Ernst, et al., A Straight path to circular proteins, J. Biol. Chem. 284(2009) 16028-16036;
      (b) J.G.M. Bolscher, M.J. Oudhoff, K. Nazmi, et al., Sortase A as a tool for highyield histatin cyclization, Faseb J. 25(2011) 2650-2658;
      (c) Z.M. Wu, X.Q. Guo, Z.W. Guo, Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides, Chem. Commun. 47(2011) 9218-9220;
      (d) X.Y. Jia, S. Kwon, C.I.A. Wang, et al., Semienzymatic cyclization of disulfiderich peptides using Sortase A, J. Biol. Chem. 289(2014) 6627-6638;
      (e) K. Stanger, T. Maurer, H. Kaluarachchi, et al., Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A, Febs Lett. 588(2014) 4487-4496;
      (f) W. van't Hof, S.H. Manaskova, E.C.I. Veerman, et al., Sortase-mediated backbone cyclization of proteins and peptides, Biol. Chem. 396(2015) 283-293.

    16. [16]

      (a) J. Bondebjerg, H. Fuglsang, K.R. Valeur, et al., Novel semicarbazide-derived inhibitors of human dipeptidyl peptidase I (hDPPI), Bioorg. Med. Chem. 13(2005) 4408-4424;
      (b) N. Ollivier, S. Besret, A. Blanpain, et al., Silver-catalyzed azaGly ligation. application to the synthesis of azapeptides and of lipid-peptide conjugates, Bioconjug. Chem. 20(2009) 1397-1403;
      (c) J. Gante, Peptide and azapeptide synthesis by means of a new N-activated amino acid derivative, Chem. Ber. 99(1966) 1576-1579;
      (d) R.E. Melendez, W.D. Lubell, Aza-amino acid scan for rapid identification of secondary structure based on the application of N-boc-aza-dipeptides in peptide synthesis, J. Am. Chem. Soc. 126(2004) 6759-6764.

    17. [17]

      Li Y.M., Li Y.T., Pan M.. Irreversible site-specific hydrazinolysis of proteins by use of sortase[J]. Angew. Chem. Int. Ed., 2014,53:2198-2202. doi: 10.1002/anie.201310010

    18. [18]

      Baer S., Nigro J., Madej M.P.. Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling[J]. Org. Biomol. Chem., 2014,12:2675-2685. doi: 10.1039/c3ob42325e

    19. [19]

      (a) E. Porciatti, M. Milenkovic, E. Gaggelli, et al., Structural characterization and antimicrobial activity of the Zn (Ⅱ) complex with P113(Demegen), a derivative of histatin 5, Inorg. Chem. 49(2010) 8690-8698;
      (b) E. Kurowska, A. Bonna, G. Goch, W. Bal, Salivary histatin-5, a physiologically relevant ligand for Ni (Ⅱ) ions, J. Inorg. Biochem. 105(2011) 1220-1225.

  • 加载中
    1. [1]

      Yingjian Shang Xuefeng Zhao Tao Wu Yanhui He Xing Guo Hongwei Si Lijuan Jiao Erhong Hao Wei Miao . A stereochemically stable double-helical trinuclear bis(tridipyrrin) complex exhibiting near-infrared chiroptical properties. Chinese Journal of Structural Chemistry, 2025, 44(12): 100722-100722. doi: 10.1016/j.cjsc.2025.100722

    2. [2]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    3. [3]

      Jiang-Feng XingKang LiWan XiangYang-Yang JuXin-Jing ZhaoXiao-Hui MaMei-Lin ZhangYuan-Zhi Tan . Oxa-helicenes embedding heptagons by stepwise cyclization of [6]helicene unit. Chinese Chemical Letters, 2025, 36(11): 110982-. doi: 10.1016/j.cclet.2025.110982

    4. [4]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    5. [5]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    8. [8]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    9. [9]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    10. [10]

      Wenxiong YuChenyu YangXian FengChengshuo Shen . Scholl cyclization of [6]helicenes into negatively curved hexa[7]circulenes. Chinese Chemical Letters, 2025, 36(11): 110939-. doi: 10.1016/j.cclet.2025.110939

    11. [11]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    12. [12]

      Huiping ShiShaojun PengMinghui YangYuanyu Huang . Engineering circular RNA with Tetrahymena group Ⅰ intron ribozyme. Chinese Chemical Letters, 2025, 36(9): 111160-. doi: 10.1016/j.cclet.2025.111160

    13. [13]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    14. [14]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    15. [15]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    16. [16]

      Yi-Kao XuGuo-Ping LuoLiang-Bin HuWei-Min He . Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed controllable cyclization of diynes. Chinese Chemical Letters, 2025, 36(8): 111226-. doi: 10.1016/j.cclet.2025.111226

    17. [17]

      Qian LiuYi ShiKaiya WangXiao-Yu Hu . Tailoring cascade hydrolysis and cyclization efficiency in confined spaces via spatial and electrostatic regulation. Chinese Chemical Letters, 2025, 36(12): 111462-. doi: 10.1016/j.cclet.2025.111462

    18. [18]

      Pan LuoJian-Ming LvHong-Ting ZhenYing-Qi ZhaoJing-Yuan LiuJin-Yu HongShao-Yang LiGao-Qian WangGuo-Dong ChenShui-Xing ZhangDan HuHao Gao . Identification of two novel sesterterpene skeletons offers the first experimental evidence for the cyclization mechanism of mangicdiene synthase. Chinese Chemical Letters, 2026, 37(1): 111042-. doi: 10.1016/j.cclet.2025.111042

    19. [19]

      Matvey K. Shurikov Yuliana A. Kolesnikova Darya E. Votkina Pavel A. Abramov Taisiya S. Sukhikh Galina V. Romanenko Sergey L. Veber Dmitry E. Gorbunov Nina P. Gritsan Giuseppe Resnati Evgeny V. Tretyakov Vadim Yu. Kukushkin Pavel S. Postnikov Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653

    20. [20]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

Metrics
  • PDF Downloads(1)
  • Abstract views(1363)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return