Citation: Liang Jing-Jing, Zhao Ming-Gang, Ding Long-Jiang, Fan Si-Si, Chen Shou-Gang. Fabrication of the ZnO/NiO p-n junction foam for the enhanced sensing performance[J]. Chinese Chemical Letters, ;2017, 28(3): 670-674. doi: 10.1016/j.cclet.2016.10.035 shu

Fabrication of the ZnO/NiO p-n junction foam for the enhanced sensing performance

  • Corresponding author: Zhao Ming-Gang, zhaomg@ouc.edu.cn Chen Shou-Gang, sgchen@ouc.edu.cn
  • Received Date: 26 July 2016
    Revised Date: 27 September 2016
    Accepted Date: 12 October 2016
    Available Online: 2 March 2016

Figures(5)

  • P-Type NiO foam with rough nanostructured surface was prepared by the surface treatment of Ni foam, and then it was decorated with n-type ZnO nanopyramids to construct a 3D p-n junction foam. The p-n junction foam was used for electrochemical detection of dopamine and the sensing performance was improved significantly compared with the single NiO and ZnO. High sensitivity (171 μA/mmol/L), fast response (2 s), excellent selectivity and stability were achieved. It was attributed to the introduction of numerous p-n junction interfaces, the interfacial potential barrier played as a tuning factor for the electrochemical determination of dopamine. The results demonstrated it would be an important way to improve the biosensing performance by introducing the p-n junction interfaces.
  • 加载中
    1. [1]

      Yue H.Y., Huang S., Chang J.. ZnO nanowire arrays on 3D hierachical graphenefoam:biomarkerdetectionofParkinson's disease[J]. ACS Nano, 2014,8:1639-1646. doi: 10.1021/nn405961p

    2. [2]

      Liu L., Du J.M., Li S.J.. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates[J]. Biosens. Bioelectron., 2013,41:730-735. doi: 10.1016/j.bios.2012.09.061

    3. [3]

      Yang L., Liu D., Huang J.S., You T.Y.. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sens. Actuators B, 2014,193:166-172. doi: 10.1016/j.snb.2013.11.104

    4. [4]

      Zhou Y.Z., Zhang L.J., Chen S.L., Dong S.Y., Zheng X.H.. Electroanalysis and simultaneous determination of dopamine and epinephrine at poly (isonicotinic acid)-modified carbon paste electrode in the presence of ascorbic acid[J]. Chin. Chem. Lett., 2009,20:217-220. doi: 10.1016/j.cclet.2008.10.026

    5. [5]

      Lin H.W., Liu H.B., Qian X.M.. Synthesizing axial inserting p-n heterojunction nanowire arrays for realizing synergistic performance[J]. Inorg. Chem., 2013,52:6969-6974. doi: 10.1021/ic400302e

    6. [6]

      Liu Y.L., Li G.Z., Mi R.D., Deng C.K., Gao P.Z.. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis[J]. Sens. Actuators B, 2014,191:537-544. doi: 10.1016/j.snb.2013.10.068

    7. [7]

      Chen Y.J., Yu L., Feng D.D.. Superior ethanol-sensing properties based on Ni-doped SnO2 p-n heterojunction hollow spheres[J]. Sens. Actuators B 166-, 2012,167:61-67.  

    8. [8]

      Wang H.T., Yuan H.T., Hong S.S., Li Y.B., Cui Y.. Physical and chemical tuning of two-dimensional transition metal dichalcogenides[J]. Chem. Soc. Rev., 2015,44:2664-2680. doi: 10.1039/C4CS00287C

    9. [9]

      Ren X.Y., Lu L.H.. Luminescent nanoscale metal-organic frameworks for chemical sensing[J]. Chin. Chem. Lett., 2015,26:1439-1445. doi: 10.1016/j.cclet.2015.10.014

    10. [10]

      Tian B.Z., Cohen-Karni T., Qing Q.. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes[J]. Science, 2010,329:830-834. doi: 10.1126/science.1192033

    11. [11]

      Zhao M.G., Cai B., Ma Y.. Introducing heterojunction barriers into single kinked nanowires for the probe-free detection of proteins and intracellular recording[J]. Nanoscale, 2014,6:4052-4057. doi: 10.1039/c3nr06159k

    12. [12]

      Yeh P.H., Li Z., Wang Z.L.. Schottky-gated probe-free ZnO nanowire biosensor[J]. Adv. Mater., 2009,21:4975-4978. doi: 10.1002/adma.v21:48

    13. [13]

      Pierozynski B., Mikolajczyk T., Turemko M.. On the temperature performance of ethanol oxidation reaction at palladium-activated nickel foam[J]. Electrocatalysis, 2015,6:173-178. doi: 10.1007/s12678-014-0231-0

    14. [14]

      Yang G.W., Xu C.L., Li H.L.. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance[J]. Chem. Commun., 2008:6537-6539.  

    15. [15]

      Wang Y.L., Zhao Y.Q., Xu C.L.. Improved performance of Pd electrocatalyst supported on three-dimensional nickel foam for direct ethanol fuel cells[J]. J. Power Sources, 2010,195:6496-6499. doi: 10.1016/j.jpowsour.2010.04.025

    16. [16]

      Jin L.N., Liu Q., Sun W.Y.. Room temperature solution-phase synthesis of flower-like nanostructures of[Ni3(BTC)2·12H2O] and their conversion to porous NiO[J]. Chin. Chem. Lett., 2013,24:663-667. doi: 10.1016/j.cclet.2013.05.001

    17. [17]

      Ohtomo A., Kawasaki M., Sakurai Y.. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE[J]. Mater. Sci. Eng. B, 1998,54:24-28. doi: 10.1016/S0921-5107(98)00120-2

    18. [18]

      Özgür Ü., Alivov Y.I., Liu C.. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005,98041301. doi: 10.1063/1.1992666

    19. [19]

      Wan G.Q., Li D.X., Li C.F., Xu J., Hou W.G.. From Zn-Al layered double hydroxide to ZnO nanostructure:gradually etching by sodium hydroxide[J]. Chin. Chem. Lett., 2012,23:1415-1418. doi: 10.1016/j.cclet.2012.10.020

    20. [20]

      Dong Y.M., Wang G.L., Jiang P.P.. Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water[J]. Chin. Chem. Lett., 2011,22:209-212. doi: 10.1016/j.cclet.2010.10.010

    21. [21]

      Li Y.R., Wan C.Y., Chang C.T.. Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure[J]. Vacuum, 2015,118:48-54. doi: 10.1016/j.vacuum.2015.01.018

    22. [22]

      Vayssieres L.. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Adv. Mater., 2003,15:464-466. doi: 10.1002/adma.200390108

    23. [23]

      She G.W., Zhang X.H., Shi W.S.. Controlled synthesis of oriented singlecrystal ZnO nanotube arrays on transparent conductive substrates[J]. Appl. Phys. Lett., 2008,92053111.  

    24. [24]

      Wang Z.H., Xue J., Han D.M., Gu F.B.. Controllable defect redistribution of ZnO nanopyramids with exposed facets for enhanced1011 gas sensing performance[J]. ACS Appl. Mater. Interfaces, 2015,7:308-317. doi: 10.1021/am506206c

    25. [25]

      Li P., Wei Z., Wu T., Peng Q., Li Y.D.. Au-ZnO hybrid nanopyramids and their photocatalytic properties[J]. J. Am. Chem. Soc., 2011,133:5660-5663. doi: 10.1021/ja111102u

    26. [26]

      Chang J., Ahmed R., Wang H.X.. ZnO nanocones with high-index facets for enhanced energy conversion efficiency of dye-sensitized solar cells[J]. J. Phys. Chem. C, 2013,117:13836-13844. doi: 10.1021/jp402742n

    27. [27]

      Xia C., Wang N., Wang L.. Optical and electro-catalytic properties of bundled ZnO nanowires grown on a ITO substrate[J]. J. Nanopart. Res., 2010,12:1869-1875. doi: 10.1007/s11051-009-9748-1

    28. [28]

      Dong X.X., Liu Y.X., Sun Y.M., Yang C., Xu Z.L.. In situ growth ofmicroporous ZnO nanorods on ITO for dopamine oxidization[J]. Mater. Lett., 2016,162:246-249. doi: 10.1016/j.matlet.2015.10.021

    29. [29]

      Wu J.P., Yin F.. Studies on the electrocatalytic oxidation of dopamine at phosphotungstic acid-ZnO spun fiber-modified electrode[J]. Sens. Actuators B, 2013,185:651-657. doi: 10.1016/j.snb.2013.05.052

    30. [30]

      Reddy S., Swamy B.E.K., Vasan H.N., Jayadevappa H.. ZnO and ZnO/polyglycine modified carbon paste electrode for electrochemical investigation of dopamine[J]. Anal. Methods, 2012,4:2778-2783. doi: 10.1039/c2ay25203a

    31. [31]

      Pandiselvi K., Thambidurai S.. Chitosan-ZnO/polyanilne nanocomposite modified glassy carbon electrode for selective detection of dopamine[J]. Int. J. Biol. Macromol., 2014,67:270-278. doi: 10.1016/j.ijbiomac.2014.03.028

    32. [32]

      Fang L.X., Huang K.J., Zhang B.L.. Nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticles for enhanced electrochemical detection of dopamine[J]. RSC Adv., 2014,4:48986-48993. doi: 10.1039/C4RA06090C

    33. [33]

      Bao Y., Song J.X., Mao Y.. Graphene oxide-templated polyaniline microsheets toward simultaneous electrochemical determination of AA/DA/UA[J]. Electroanalysis, 2011,23:878-884. doi: 10.1002/elan.201000607

    34. [34]

      Manivel P., Dhakshnamoorthy M., Balamurugan A.. Conducting polyaniline-graphene oxide fibrous nanocomposites:preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid[J]. RSC Adv., 2013,3:14428-14437. doi: 10.1039/c3ra42322k

  • 加载中
    1. [1]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    2. [2]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    3. [3]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    4. [4]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    5. [5]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    8. [8]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    9. [9]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    12. [12]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    16. [16]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    20. [20]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

Metrics
  • PDF Downloads(1)
  • Abstract views(646)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return