Citation: Zhu Yong, Bai Zhi-Shan, Wang Hua-Lin. Microfluidic synthesis of thiourea modified chitosan microsphere of high specific surface area for heavy metal wastewater treatment[J]. Chinese Chemical Letters, ;2017, 28(3): 633-641. doi: 10.1016/j.cclet.2016.10.031 shu

Microfluidic synthesis of thiourea modified chitosan microsphere of high specific surface area for heavy metal wastewater treatment

  • Corresponding author: Bai Zhi-Shan, baizs@ecust.edu.cn
  • Received Date: 27 July 2016
    Revised Date: 23 September 2016
    Accepted Date: 12 October 2016
    Available Online: 1 March 2016

Figures(13)

  • An improved biosorbent of thiourea modified chitosan microsphere (TMCM) with high specific surface, favorable mechanical strength and excellent adsorption performance had been synthesized via microfluidic technology. Polyethylene glycol was used as a significant component added in aqueous solution of chitosan to produce such microspheres through droplets forming, chemical crosslinking and pores creating. For the improvement of adsorption capacity, thiourea was considered as an excellent choice in increasing amino functional group by graft modification. The SEM, FTIR and EDS were employed to detect distinct features of TMCM. Copper (Ⅱ) was used to test the adsorption performance of TMCM. The experimental results indicated that TMCM exhibited higher adsorption capacity (qe=60.6 mg g-1) and faster adsorption rate than that non-modified chitosan microsphere (NMCM). The adsorption kinetic was described well by the pseudo-second order kinetic model, which suggested that chemical adsorption along with electrons transferring was dominant in adsorption process.
  • 加载中
    1. [1]

      Cheng J.J., Shan G.R., Pan P.J.. Temperature and pH-dependent swelling and copper (Ⅱ) adsorption of poly (N-isopropylacrylamide) copolymer hydrogel[J]. RSC Adv., 2015,5:62091-62100. doi: 10.1039/C5RA09965J

    2. [2]

      Zhu S.Y., Guo H.Y., Yang F.F., Wang Z.S.. Thiacalix[4] arene 1, 2, 3-triazole-polyethylene glycol polymers:synthesis and dye adsorption properties[J]. Chin. Chem. Lett., 2015,26:1091-1095. doi: 10.1016/j.cclet.2015.03.031

    3. [3]

      Al-Qodah Z.. Biosorption of heavy metal ions from aqueous solutions by activated sludge[J]. Desalination, 2006,196:164-176. doi: 10.1016/j.desal.2005.12.012

    4. [4]

      Noor S., Waseem M., Rashid U.. Fabrication of NiO coated SiO2 and SiO2 coated NiO for the removal of Pb2+ ions[J]. Chin. Chem. Lett., 2014,25:819-822. doi: 10.1016/j.cclet.2014.01.040

    5. [5]

      Srivastava N.K., Majumder C.B.. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. J. Hazard. Mater., 2008,151:1-8. doi: 10.1016/j.jhazmat.2007.09.101

    6. [6]

      Shafaei A., Rezayee M., Arami M., Nikazar M.. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process[J]. Desalination, 2010,260:23-28. doi: 10.1016/j.desal.2010.05.006

    7. [7]

      Sangvanich T., Sukwarotwat V., Wiacek R.J.. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica[J]. J. Hazard. Mater., 2010,182:225-231. doi: 10.1016/j.jhazmat.2010.06.019

    8. [8]

      Ding F.Y., Deng H.B., Du Y.M., Shi X.W., Wang Q.. Emerging chitin and chitosan nano fibrous materials for biomedical applications[J]. Nanoscale, 2014,6:9477-9493. doi: 10.1039/C4NR02814G

    9. [9]

      Vold I.M.N., Vårum K.M., Guibal E., Smidsrød O.. Binding of ions to chitosanselectivity studies[J]. Carbohydr. Polym., 2003,54:471-477. doi: 10.1016/j.carbpol.2003.07.001

    10. [10]

      Gamage A., Shahidi F.. Use of chitosan for the removal of metal ion contaminants and proteins from water[J]. Food Chem., 2007,104:989-996. doi: 10.1016/j.foodchem.2007.01.004

    11. [11]

      Ke G., Guan W.C., Tang C.Y.. Covalent modification of multiwalled carbon nanotubes with a low molecular weight chitosan[J]. Chin. Chem. Lett., 2007,18:361-364. doi: 10.1016/j.cclet.2007.01.010

    12. [12]

      Yang Y.M., Zhao W.J., He J.H.. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent[J]. Eur. J. Pharm. Biopharm., 2011,79:519-525. doi: 10.1016/j.ejpb.2011.06.008

    13. [13]

      Zhou L.M., Liu Z.R., Liu J.H., Huang Q.Q.. Adsorption of Hg (Ⅱ) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres[J]. Desalination, 2010,258:41-47. doi: 10.1016/j.desal.2010.03.051

    14. [14]

      Fujiwara K., Ramesh A., Maki T., Hasegawa H., Ueda K.. Adsorption of platinum (Ⅳ), palladium (Ⅱ) and gold (Ⅲ) from aqueous solutions onto L-lysine modified crosslinked chitosan resin[J]. J.Hazard. Mater., 2007,146:39-50. doi: 10.1016/j.jhazmat.2006.11.049

    15. [15]

      Guibal E., Sweeney N.V.O., Zikan M.C., Vincent T., Tobin J.M.. Competitive sorption of platinum and palladium on chitosan derivatives[J]. Int. J. Biol. Macromol., 2001,28:401-408. doi: 10.1016/S0141-8130(01)00130-1

    16. [16]

      Donia A.M., Atia A.A., Elwakeel K.Z.. Selective separation of mercury (Ⅱ) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde[J]. J. Hazard. Mater., 2008,151:372-379. doi: 10.1016/j.jhazmat.2007.05.083

    17. [17]

      Zhou L.M., Xu J.P., Liang X.Z., Liu Z.R.. Adsorption of platinum (Ⅳ) and palladium (Ⅱ) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine[J]. J. Hazard. Mater., 2010,182:518-524. doi: 10.1016/j.jhazmat.2010.06.062

    18. [18]

      Kim J.H., Jeon T.Y., Choi T.M.. Droplet microfluidics for producing functional microparticles[J]. Langmuir, 2014,30:1473-1488. doi: 10.1021/la403220p

    19. [19]

      Zhao H., Xu J.H., Wang T., Luo G.S.. A novel microfluidic approach for preparing chitosan-silica core-shell hybrid microspheres with controlled structures and their catalytic performance[J]. Lab Chip, 2014,14:1901-1906. doi: 10.1039/C4LC00079J

    20. [20]

      Xu J.H., Zhao H., Lan W.J., Luo G.S.. A novel microfluidic approach for monodispersed chitosan microspheres with controllable structures[J]. Adv. Healthc. Mater., 2012,1:106-111. doi: 10.1002/adhm.201100014

    21. [21]

      Zhao H., Xu J.H., Dong P.F., Luo G.S.. A novel microfluidic approach for monodispersed chitosan microspheres with enhanced autofluorescence[J]. Chem. Eng. J., 2013,215-216:784-790. doi: 10.1016/j.cej.2012.10.063

    22. [22]

      Zhao H., Xu J.H., Lan W.J., Wang T., Luo G.S.. Microfluidic production of porous chitosan/silica hybrid microspheres and its Cu (Ⅱ) adsorption performance[J]. Chem. Eng. J., 2013,229:82-89. doi: 10.1016/j.cej.2013.05.093

    23. [23]

      Lu Y.C., He J., Luo G.S.. An improved synthesis of chitosan bead for Pb (Ⅱ) adsorption[J]. Chem. Eng. J., 2013,226:271-278. doi: 10.1016/j.cej.2013.04.078

    24. [24]

      Li C.X., Pan J.M., Gao J., Yan Y.S., Zhao G.Q.. An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol-gel process for selective separation of Ce (Ⅲ)[J]. Chin. Chem. Lett., 2009,20:985-989. doi: 10.1016/j.cclet.2009.03.020

    25. [25]

      Molina R., Jovancic P., Vilchez S., Tzanov T., Solans C.. In situ chitosan gelation initiated by atmospheric plasma treatment[J]. Carbohydr. Polym., 2014,103:472-479. doi: 10.1016/j.carbpol.2013.12.084

    26. [26]

      Guibal E., Milot C., Eterradossi O., Gauffier C., Domard A.. Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses[J]. Int. J. Biol. Macromol., 1999,24:49-59. doi: 10.1016/S0141-8130(98)00067-1

    27. [27]

      Ren Y.M., Wei X.Z., Zhang M.L.. Adsorption character for removal Cu (Ⅱ) by magnetic Cu (Ⅱ) ion imprinted composite adsorbent[J]. J. Hazard. Mater., 2008,158:14-22. doi: 10.1016/j.jhazmat.2008.01.044

    28. [28]

      Deng H.T., Wang J.J., Ma M., Liu Z.Y., Zheng F.. Hydrophobic surface modification of chitosan gels by stearyl for improving the activity of immobilized lipase[J]. Chin. Chem. Lett., 2009,20:995-999. doi: 10.1016/j.cclet.2009.03.037

    29. [29]

      Wang Z.K., Hu Q.L., Wang Y.X.. Preparation of chitosan rods with excellent mechanical properties:one candidate for bone fracture internal fixation[J]. Sci. China Chem., 2011,54:380-384.  

    30. [30]

      Gavilan K.C., Pestov A.V., Garcia H.M.. Mercury sorption on a thiocarbamoyl derivative of chitosan[J]. J. Hazard. Mater., 2009,165:415-426. doi: 10.1016/j.jhazmat.2008.10.005

    31. [31]

      Wang L., Xing R.E., Liu S.. Recovery of silver (Ⅰ) using a thiourea-modified chitosan resin[J]. J. Hazard. Mater., 2010,180:577-582. doi: 10.1016/j.jhazmat.2010.04.072

    32. [32]

      Zemljič L.F., Strnad S., Šauperl O., Stana-Kleinschek K.. Characterization of amino groups for cotton fibers coated with chitosan[J]. Text. Res. J., 2009,79:219-226. doi: 10.1177/0040517508093592

    33. [33]

      Yang L.Q., Li Y.F., Jin X.L.. Synthesis and characterization of a series of chelating resins containing amino/imino-carboxyl groups and their adsorption behavior for lead in aqueous phase[J]. Chem. Eng. J., 2011,168:115-124. doi: 10.1016/j.cej.2010.12.048

    34. [34]

      Uygun A., Kiristi M., Oksuz L., Manolache S., Ulusoy S.. RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications[J]. Carbohydr. Res., 2011,346:259-265. doi: 10.1016/j.carres.2010.11.020

    35. [35]

      Chang Y.C., Chen D.H.. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (Ⅱ) ions[J]. J. Colloid Interface Sci., 2005,283:446-451. doi: 10.1016/j.jcis.2004.09.010

    36. [36]

      Li N., Bai R.B.. Copper adsorption on chitosan-cellulose hydrogel beads:behaviors and mechanisms[J]. Sep. Purif. Technol., 2005,42:237-247. doi: 10.1016/j.seppur.2004.08.002

    37. [37]

      Ren Y.M., Zhang M.L., Zhao D.. Synthesis and properties of magnetic Cu (Ⅱ) ion imprinted composite adsorbent for selective removal of copper[J]. Desalination, 2008,228:135-149. doi: 10.1016/j.desal.2007.08.013

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    3. [3]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    4. [4]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    5. [5]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    6. [6]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    7. [7]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    8. [8]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    12. [12]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    15. [15]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    18. [18]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    19. [19]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    20. [20]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

Metrics
  • PDF Downloads(6)
  • Abstract views(745)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return