Citation: Luo Qing-Jiao, Li Yong-Xin, Zhang Meng-Qian, Qiu Ping, Deng Yong-Hui. A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides[J]. Chinese Chemical Letters, ;2017, 28(2): 345-349. doi: 10.1016/j.cclet.2016.10.024 shu

A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides

  • Corresponding author: Qiu Ping, pingqiu@ncu.edu.cn
  • Received Date: 6 September 2016
    Revised Date: 10 October 2016
    Accepted Date: 13 October 2016
    Available Online: 27 February 2016

Figures(4)

  • A highly sensitive sensor for determination of carbamate pesticides based rhodamine B (RB) modified silver nanoparticle (RB-AgNPs) was developed. Compared with the classical method, it combined colorimetric with fluorescence for detecting carbamate pesticides in complex solutions. Carbamate pesticides can inhibit the activity of acetylcholinesterase (AChE), thus preventing the generation of thiocholine. On the other hand, thioncholine can transform the yellow RB-AgNPs solutions gray color and unquenches the fluorescence of RB simultaneously. Once the activity of AChE was inhibited by the pesticide, the color of the RB-AgNPs solution remains yellow and the fluorescence of RB molecules remains quenched. Under optimized experimental conditions, carbaryl was detected in a concentration range from 0.1 ng/L to 8.0 ng/L with a detection limit of 0.023 ng/L (it was detected by fluorescence spectra). This simple method is suitable for determination of carbamate pesticides in complex samples, such as tomato, apple and river water.
  • 加载中
    1. [1]

      X. Zhang, H.B. Wang, C.M. Yang, D. Du, Y.H. Lin. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides[J]. Biosens. Bioelectron., 2013,41:669-674. doi: 10.1016/j.bios.2012.09.047

    2. [2]

      A. Sahin, K. Dooley, D.M. Cropek, A.C. West, S. Banta. A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase[J]. Sens. Actuators B., 2011,158:353-360. doi: 10.1016/j.snb.2011.06.034

    3. [3]

      T. Liu, H.C. Su, X.J. Qu. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides[J]. Sens. Actuators B., 2011,160:1255-1261. doi: 10.1016/j.snb.2011.09.059

    4. [4]

      C. Wang, Q.H. Wu, C.X. Wu, Z. Wang. Determination of some organophosphorus pesticides in water and watermelon samples by microextraction prior to high-performance liquid chromatography[J]. J. Sep. Sci., 2011,34:3231-3239. doi: 10.1002/jssc.v34.22

    5. [5]

      X.H. Cheng, Z.J. Zhang, S.K. Tian. A novel long path length absorbance spectroscopy for the determination of ultra trace organophosphorus pesticides in vegetables and fruits[J]. Spectrochim. Acta A., 2007,67:1270-1275. doi: 10.1016/j.saa.2006.10.018

    6. [6]

      X. Gao, G.C. Tang, X.G. Su. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor[J]. Biosens. Bioelectron., 2012,36:75-80. doi: 10.1016/j.bios.2012.03.042

    7. [7]

      N. Chauhan, C.S. Pundir. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multiwalled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides[J]. Anal. Chim. Acta., 2011,701:66-74. doi: 10.1016/j.aca.2011.06.014

    8. [8]

      J.Y. Hou, G.J. Dong, Z.B. Tian. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system[J]. Food Chem., 2016,202:81-87. doi: 10.1016/j.foodchem.2015.11.134

    9. [9]

      S. Viswanathan, H. Radecka, J. Radecki. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA[J]. Biosens. Bioelectron., 2009,24:2772-2777. doi: 10.1016/j.bios.2009.01.044

    10. [10]

      Q.Y. Yang, Q. Sun, T.S. Zhou, G.Y. Shi, L.T. Jin. Determination of parathion in vegetables by electrochemical sensor based on molecularly imprinted polyethyleneimine/silica gel films[J]. J. Agric. Food Chem., 2009,57:6558-6563. doi: 10.1021/jf901286e

    11. [11]

      A.Q. Chen, D. Du, Y.H. Lin. Highly sensitive and selective immuno-capture/electrochemical assay of acetylcholinesterase activity in red blood cells:a biomarker of exposure to organophosphorus pesticides and nerve agents[J]. Environ. Sci. Technol., 2012,46:1828-1833. doi: 10.1021/es202689u

    12. [12]

      D. Du, J. Wang, L.M. Wang, D.L. Lu, Y.H. Lin. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase:biomarker of exposure to organophosphorus agents[J]. Anal. Chem., 2012,84:1380-1385. doi: 10.1021/ac202391w

    13. [13]

      N.M. Brito, S. Navickiene, L. Polese. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection[J]. J. Chromatogr. A., 2002,957:201-209. doi: 10.1016/S0021-9673(02)00351-5

    14. [14]

      J. Lee, H.K. Lee. Fully automated dynamic in-syringe liquid-phase microextraction and on-column derivatization of carbamate pesticides with gas chromatography/mass spectrometric Analysis[J]. Anal. Chem., 2011,83:6856-6861. doi: 10.1021/ac200807d

    15. [15]

      P. Paya', M. Anastassiades, D. Mack. Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection[J]. Anal. Bioanal. Chem., 2007,389:1697-1714. doi: 10.1007/s00216-007-1610-7

    16. [16]

      P. Qiu, Y.N. Ni, S. Kokot. Application of artificial neural networks to the determination of pesticides by linear sweep stripping voltammetry[J]. Chin. Chem. Lett., 2013,24:246-248. doi: 10.1016/j.cclet.2013.01.029

    17. [17]

      S.P. Zhang, L.G. Shan, Z.R. Tian. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue[J]. Chin. Chem. Lett., 2008,19:592-594. doi: 10.1016/j.cclet.2008.03.014

    18. [18]

      G.D. Liu, Y.H. Lin. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents[J]. Anal. Chem., 2006,78:835-843. doi: 10.1021/ac051559q

    19. [19]

      M. Sirotkina, I. Lyagin, E. Efremenko. Hydrolysis of organophosphorus pesticides in soil:new opportunities with ecocompatible immobilized His6-OPH[J]. Int. Biodeterior. Biodegrad., 2012,68:18-23. doi: 10.1016/j.ibiod.2011.12.004

    20. [20]

      S. Thakur, M.V. Reddy, D. Siddavattam, A.K. Paul. A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates[J]. Sens. Actuators B., 2012,163:153-158. doi: 10.1016/j.snb.2012.01.024

    21. [21]

      Y.N. Ni, D.X. Cao, S. Kokot. Simultaneous enzymatic kinetic determination of pesticides carbaryl and phoxim, with the aid of chemometrics[J]. Anal. Chim. Acta., 2007,588:131-139. doi: 10.1016/j.aca.2007.01.073

    22. [22]

      A.N. Ivanov, R.R. Younusov, G.A. Evtugyn. Acetylcholinesterase biosensor based on single-walled carbon nanotubes-Co phtalocyanine for organophosphorus pesticides detection[J]. Talanta., 2011,85:216-221. doi: 10.1016/j.talanta.2011.03.045

    23. [23]

      Y.N. Ni, N. Deng, S. Kokot. Simultaneous enzymatic kinetic determination of carbamate pesticides with the aid of chemometrics[J]. Int. J. Environ. Anal. Chem., 2009,89:939-955. doi: 10.1080/03067310902756151

    24. [24]

      Z.M. Cui, C.P. Han, H.B. Li. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles[J]. Analyst., 2011,136:1351-1356. doi: 10.1039/c0an00617c

    25. [25]

      J.F. Sun, L. Guo, Y. Bao, J.W. Xie. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide[J]. Biosens. Bioelectron., 2011,28:152-157. doi: 10.1016/j.bios.2011.07.012

    26. [26]

      A. Virel, L. Saa, V. Pavlov. Modulated growth of nanoparticles. Application for sensing nerve gases[J]. Anal. Chem., 2009,81:268-272. doi: 10.1021/ac801949x

    27. [27]

      H.K. Li, J.J. Guo, H. Ping. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe[J]. Talanta., 2011,87:93-99. doi: 10.1016/j.talanta.2011.09.046

    28. [28]

      Q. Xu, S. Du, G.D. Jin, H.B. Li, X.Y. Hu. Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles[J]. Microchim. Acta., 2011,173:323-329. doi: 10.1007/s00604-011-0562-y

    29. [29]

      J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 4th ed., Pearson Education Limited, London, 2000.

    30. [30]

      Z. Li, Y. Wang, Y.N. Ni, S. Kokot. Unmodified silver nanoparticles for rapid analysis of the organophosphorus pesticide dipterex, often found in different waters[J]. Sens. Actuators B., 2014,193:205-211. doi: 10.1016/j.snb.2013.11.096

    31. [31]

      D.N. Kumar, A. Rajeshwari, S.A. Alex. Developing acetylcholinesterase-based inhibition assay by modulated synthesis of silver nanoparticles:applications for sensing of organophosphorus pesticides[J]. RSC Adv., 2015,5:61998-62006. doi: 10.1039/C5RA10146H

    32. [32]

      S.M.Z. Hossain, R.E. Luckham, M.J. McFadden, J.D. Brennan. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples[J]. Anal. Chem., 2009,81:9055-9064. doi: 10.1021/ac901714h

    33. [33]

      K. Wang, Q. Liu, L.N. Dai. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite[J]. Anal. Chim. Acta., 2011,695:84-88. doi: 10.1016/j.aca.2011.03.042

    34. [34]

      V.A. Pedrosa, J. Caetano, S.A.S. Machado, M. Bertotti. Determination of parathion and carbaryl pesticides in water and food samples using a selfassembled monolayer/acetylcholinesterase electrochemical biosensor[J]. Sensors., 2008,8:4600-4610. doi: 10.3390/s8084600

    35. [35]

      J.R. Bhamore, P. Ganguly, S.K. Kailasa. Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples[J]. Sens. Actuators B., 2016,233:486-495. doi: 10.1016/j.snb.2016.04.111

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    3. [3]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(6)
  • Abstract views(641)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return