Citation: Chen Wei, Gong Ya-Feng, Liu Jie-Hua. Recent advances in electrocatalysts for non-aqueous Li-O2 batteries[J]. Chinese Chemical Letters, ;2017, 28(4): 709-718. doi: 10.1016/j.cclet.2016.10.023 shu

Recent advances in electrocatalysts for non-aqueous Li-O2 batteries

  • Corresponding author: Liu Jie-Hua, liujh@hfut.edu.cn
  • Received Date: 3 August 2016
    Revised Date: 26 September 2016
    Accepted Date: 8 October 2016
    Available Online: 27 April 2016

Figures(8)

  • As one of the next-generation energy-storage devices, Li-O2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship, relatively simple structures, high energy density of 3500 Wh/kg and low cost.However, Li-O2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electro-catalysts, membranes, Li-based anode and so on.In this review, we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O2 batteries which are relatively simpler than other Li-O2 batteries' structures.Electrocatalysts were summarized including noble metals, nano-carbon materials, transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity, but also have novel nanoarchitectures with large interface and porous volume for LiOx storage.Furthermore, the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.
  • 加载中
    1. [1]

      Dunn B., Kamath H., Tarascon J.M.. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011,334:928-935. doi: 10.1126/science.1212741

    2. [2]

      Goodenough J.B., Park K.S.. The Li-ion rechargeable battery:a perspective[J]. J. Am.Chem.Soc., 2013,135:1167-1176. doi: 10.1021/ja3091438

    3. [3]

      Liu J.H., Chen J.S., Wei X.F., Lou X.W., Liu X.W.. Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage[J]. Adv.Mater., 2011,23:998-1002. doi: 10.1002/adma.v23.8

    4. [4]

      Liu J.H., Liu X.W.. Two-dimensional nanoarchitectures for lithium storage[J]. Adv. Mater., 2012,24:4097-4111. doi: 10.1002/adma.201104993

    5. [5]

      Girishkumar G., McCloskey B., Luntz A.C., Swanson S., Wilcke W.. Lithium-air battery:promise and challenges[J]. J.Phys.Chem.Lett., 2010,1:2193-2203. doi: 10.1021/jz1005384

    6. [6]

      Xu K., von Cresce A.. Interfacing electrolytes with electrodes in Li ion batteries[J]. J.Mater.Chem., 2011,21:9849-9864. doi: 10.1039/c0jm04309e

    7. [7]

      Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M.. Li-O2 and Li-S batteries with high energy storage[J]. Nat.Mater., 2012,11:19-29.  

    8. [8]

      Abraham K.M., Jiang Z.. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J.Electrochem.Soc., 1996,143:1-5. doi: 10.1149/1.1836378

    9. [9]

      Ogasawara T., Débart A., Holzapfel M., Novák P., Bruce P.G.. Rechargeable Li2O2 electrode for lithium batteries[J]. J.Am.Chem.Soc., 2006,128:1390-1393. doi: 10.1021/ja056811q

    10. [10]

      Wu C., Liao C.B., Li L., Yang J.. Ethylene sulfite based electrolyte for non-aqueous lithium oxygen batteries[J]. Chin.Chem.Lett., 2016,27:1485-1489. doi: 10.1016/j.cclet.2016.03.023

    11. [11]

      Laoire C.O., Mukerjee S., Abraham K.M., Plichta E.J., Hendrickson M.A.. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. J.Phys.Chem.C, 2010,114:9178-9186. doi: 10.1021/jp102019y

    12. [12]

      Kumar B., Kumar J.. Cathodes for solid-state lithium-oxygen cells:roles of nasicon glass-ceramics[J]. J.Electrochem.Soc., 2010,157:A611-A616. doi: 10.1149/1.3356988

    13. [13]

      Wang Y.G., Zhou H.S.. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J]. J.Power Sources, 2010,195:358-361. doi: 10.1016/j.jpowsour.2009.06.109

    14. [14]

      Lu J., Li L., Park J.B.. Aprotic and aqueous Li-O2 batteries[J]. Chem.Rev., 2014,114:5611-5640. doi: 10.1021/cr400573b

    15. [15]

      Peng Z.Q., Freunberger S.A., Hardwick L.J.. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angew.Chem.Int.Ed., 2011,50:6351-6355. doi: 10.1002/anie.201100879

    16. [16]

      McCloskey B.D., Scheffler R., Speidel A., Girishkumar G., Luntz A.C.. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials:some implications for Li-air batteries[J]. J.Phys.Chem., 2012,116:23897-23905.  

    17. [17]

      Wang Z.L., Xu D., Xu J.J., Zhang X.B.. Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes[J]. Chem.Soc.Rev., 2014,43:7746-7786. doi: 10.1039/C3CS60248F

    18. [18]

      Park S., Shao Y.Y., Liu J., Wang Y.. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells:status and perspective[J]. Energy Environ.Sci., 2012,5:9331-9344. doi: 10.1039/c2ee22554a

    19. [19]

      Lu Y.C., Xu Z.C., Gasteiger H.A.. Platinum-gold nanoparticles:a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. J. Am.Chem.Soc., 2010,132:12170-12171. doi: 10.1021/ja1036572

    20. [20]

      Lu Y.C., Gasteiger H.A., Shao-Horn Y.. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries[J]. J.Am.Chem.Soc., 2011,133:19048-19051. doi: 10.1021/ja208608s

    21. [21]

      Su D.W., Dou S.X., Wang G.X.. Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries[J]. NPG Asia Mater., 2005,7e155.  

    22. [22]

      Sun B., Munroe P., Wang G.X.. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Sci.Rep., 2013,32247. doi: 10.1038/srep02247

    23. [23]

      Luo W.B., Gao X.W., Chou S.L., Wang J.Z., Liu H.K.. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries[J]. Adv.Mater., 2015,27:6862-6869. doi: 10.1002/adma.201502262

    24. [24]

      Cheng F.Y., Zhang T.R., Zhang Y.. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew.Chem.Int.Ed., 2013,52:2474-2477. doi: 10.1002/anie.v52.9

    25. [25]

      Cui Y.M., Wen Z.Y., Sun S.J., Lu Y., Jin J.. Mesoporous Co3O4 with different porosities as catalysts for the lithium-oxygen cell[J]. Solid State Ion., 2012,225:598-603. doi: 10.1016/j.ssi.2012.01.021

    26. [26]

      Tong S.F., Zheng M.B., Lu Y.. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries[J]. J.Mater.Chem.A, 2015,3:16177-16182. doi: 10.1039/C5TA03685B

    27. [27]

      Zhang Z., Zhou G., Chen W., Lai Y.Q., Li J.. Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries[J]. ECS Electrochem. Lett., 2013,3:A8-A10. doi: 10.1149/2.006401eel

    28. [28]

      Lee Y., Ye B.U., Yu H.K.. Facile synthesis of single crystalline metallic RuO2 nanowires and electromigration-induced transport properties[J]. J.Phys.Chem. C, 2011,115:4611-4615. doi: 10.1021/jp200426s

    29. [29]

      Liao K.M., Wang X.B., Sun Y.. An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide[J]. Energy Environ. Sci., 2015,8:1992-1997. doi: 10.1039/C5EE01451D

    30. [30]

      Liao K.M., Zhang T., Wang Y.Q.. Nanoporous Ru as a carbon-and binder-free cathode for Li-O2 batteries[J]. ChemSusChem, 2015,8:1429-1434. doi: 10.1002/cssc.v8.8

    31. [31]

      Zhang C.F., Tang D.M., Hu X.K.. Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium-O2 batteries[J]. Energy Storage Mater., 2016,2:8-13. doi: 10.1016/j.ensm.2015.10.004

    32. [32]

      Lu X.Y., Deng J.W., Si W.P.. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes[J]. Adv.Sci., 2015,21500113. doi: 10.1002/advs.201500113

    33. [33]

      Yoon K.R., Lee G.Y., Jung J.W.. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries[J]. Nano Lett., 2016,16:2076-2083. doi: 10.1021/acs.nanolett.6b00185

    34. [34]

      Liu Q.C., Jiang Y.S., Xu J.J.. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries[J]. Nano Res., 2015,8:576-583. doi: 10.1007/s12274-014-0689-3

    35. [35]

      Zhang J., Luan Y.P., Lyu Z.. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015,7:14881-14888. doi: 10.1039/C5NR02983J

    36. [36]

      Liu Q.C., Xu J.J., Xu D., Zhang X.B.. Flexible lithium-oxygen battery based on a recoverable cathode[J]. Nat.Commun., 2015,67892. doi: 10.1038/ncomms8892

    37. [37]

      Hu X.F., Cheng F.Y., Han X.P., Zhang T.R., Chen J.. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015,11:809-813. doi: 10.1002/smll.201401790

    38. [38]

      Liu L.L., Wang J., Hou Y.Y.. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries[J]. Small, 2016,12:602-611. doi: 10.1002/smll.v12.5

    39. [39]

      Mohamed S.G., Tsai Y.Q., Chen C.J.. Ternary spinel MCo2O4(M=Mn, Fe Ni, and Zn)porous nanorods as bifunctional cathode materials for lithium-O2 batteries[J]. ACS Appl.Mater.Interfaces, 2015,7:12038-12046. doi: 10.1021/acsami.5b02180

    40. [40]

      Suntivich J., Gasteiger H.A., Yabuuchi N.. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat.Chem., 2011,3:546-550. doi: 10.1038/nchem.1069

    41. [41]

      Oh S.H., Nazar L.F.. Oxide catalysts for rechargeable high-capacity Li-O2 batteries[J]. Adv.Energy Mater., 2012,2:903-910. doi: 10.1002/aenm.201200018

    42. [42]

      Kim J., Yin X., Tsao K.C., Fang S.H., Yang H.. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J.Am.Chem.Soc., 2014,136:14646-14649. doi: 10.1021/ja506254g

    43. [43]

      Wu F., Zhang X.X., Zhao T.L.. Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries[J]. J.Mater.Chem.A, 2015,3:17620-17626. doi: 10.1039/C5TA04673D

    44. [44]

      Kundu D., Black R., Berg E.J., Nazar L.F.. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries[J]. Energy Environ.Sci., 2015,8:1292-1298. doi: 10.1039/C4EE02587C

    45. [45]

      Zhang J., Zhao Y.B., Zhao X., Liu Z.L., Chen W.. Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential[J]. Sci.Rep., 2014,46005.  

    46. [46]

      Oh S.H., Black R., Pomerantseva E., Lee J.H., Nazar L.F.. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nat.Chem., 2012,4:1004-1010. doi: 10.1038/nchem.1499

    47. [47]

      Wu F., Wu S.X., Chen R.J., Chen S., Wang G.Q.. Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries[J]. Chin. Chem.Lett., 2009,20:1255-1258. doi: 10.1016/j.cclet.2009.04.036

    48. [48]

      Ding N., Chien S.W., Hor T.S.A.. Influence of carbon pore size on the discharge capacity of Li-O2 batteries[J]. J.Mater.Chem.A, 2014,2:12433-12441. doi: 10.1039/C4TA01745E

    49. [49]

      Sun B., Chen S.Q., Liu H., Wang G.X.. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Adv.Funct.Mater., 2015,25:4436-4444. doi: 10.1002/adfm.v25.28

    50. [50]

      Wang Z.L., Xu D., Huang Y.. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries[J]. Chem.Commun., 2012,48:976-978. doi: 10.1039/C2CC16239C

    51. [51]

      Wang Z.L., Xu D., Xu J.J., Zhang L.L., Zhang X.B.. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Adv.Funct.Mater., 2012,22:3699-3705. doi: 10.1002/adfm.v22.17

    52. [52]

      Guo Z.Y., Wang J., Wang F.. Leaf-like graphene oxide with a carbon nanotube midrib and its application in energy storage devices[J]. Adv.Funct. Mater., 2013,23:4840-4846.  

    53. [53]

      Zhang G.Q., Zheng J.P., Liang R.. Lithium-air batteries using SWNT/CNF buckypapers as air electrodes[J]. J.Electrochem.Soc., 2010,157:A953-A956. doi: 10.1149/1.3446852

    54. [54]

      Liu S.H., Wang Z.Y., Yu C.. Free-standing, hierarchically porous carbon nanotubefilm as a binder-free electrode for high-energy Li-O2 batteries[J]. J. Mater.Chem.A, 2013,1:12033-12037. doi: 10.1039/c3ta13069j

    55. [55]

      Meng W., Liu S.W., Wen L.N., Qin X.. Carbon microspheres air electrode for rechargeable Li-O2 batteries[J]. RSC Adv., 2015,5:52206-52209. doi: 10.1039/C5RA08445H

    56. [56]

      Huang X., Yu H., Tan H.T.. Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries[J]. Adv.Funct. Mater., 2014,24:6516-6523. doi: 10.1002/adfm.v24.41

    57. [57]

      Jung H.G., Jeong Y.S., Park J.B.. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013,7:3532-3539. doi: 10.1021/nn400477d

    58. [58]

      Xie J., Yao X.H., Cheng Q.M.. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode[J]. Angew.Chem.Int. Ed., 2015,54:4299-4303. doi: 10.1002/anie.201410786

    59. [59]

      Kim Y.J., Lee H., Lee D.J., Park J.K., Kim H.T.. Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li-O2 batteries[J]. ChemSusChem, 2015,8:2496-2502. doi: 10.1002/cssc.201500520

    60. [60]

      Liu J.H., Shen A.L., Wei X.F.. Ultrathin wrinkled N-doped carbon nanotubes for noble-metal loading and oxygen reduction reaction[J]. ACS Appl. Mater.Interfaces, 2015,7:20507-20512. doi: 10.1021/acsami.5b07554

    61. [61]

      Liu J.H., Shen A.L., Wei X.F.. Homogenous core-shell nitrogen-doped carbon nanotubes for the oxygen reduction reaction[J]. ChemElectroChem, 2015,2:1892-1896. doi: 10.1002/celc.201500223

    62. [62]

      Liu S.Y., Zhu Y.G., Xie J.. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Adv.Energy Mater., 2014,41301960. doi: 10.1002/aenm.201301960

    63. [63]

      Qiu D.F., Bu G., Zhao B.. In situ growth of mesoporous NiO nanoplates on a graphene matrix as cathode catalysts for rechargeable lithium-air batteries[J]. Mater.Lett., 2015,141:43-46. doi: 10.1016/j.matlet.2014.11.033

    64. [64]

      Jee S.W., Choi W., Ahn C.H.. Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium-oxygen batteries[J]. J.Mater.Chem.A, 2015,3:13767-13775. doi: 10.1039/C5TA02442K

    65. [65]

      Jian Z.L., Liu P., Li F.J., Chen M.W., Zhou H.S.. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries[J]. J.Mater.Chem.A, 2014,2:13805-13809. doi: 10.1039/C4TA02516D

    66. [66]

      Xiao J., Mei D.H., Li X.L.. Hierarchically porous graphene as a lithium-air battery electrode[J]. Nano Lett., 2011,11:5071-5078. doi: 10.1021/nl203332e

    67. [67]

      Huang X.D., Sun B., Su D.W., Zhao D.Y., Wang G.X.. Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium-O2 batteries and oil adsorption applications[J]. J.Mater.Chem.A, 2014,2:7973-7979. doi: 10.1039/c4ta00829d

    68. [68]

      Zhou W., Zhang H.Z., Nie H.J.. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery[J]. ACS Appl.Mater.Interfaces, 2015,7:3389-3397. doi: 10.1021/am508513m

    69. [69]

      Ryu W.H., Yoon T.H., Song S.H.. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries[J]. Nano Lett., 2013,13:4190-4197. doi: 10.1021/nl401868q

    70. [70]

      Li F.J., Ohnishi R., Yamada Y.. Carbon supported TiN nanoparticles:an efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chem. Commun., 2013,49:1175-1177. doi: 10.1039/c2cc37042e

    71. [71]

      Kwak W.J., Lau K.C., Shin C.D.. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J]. ACS Nano, 2015,9:4129-4137. doi: 10.1021/acsnano.5b00267

    72. [72]

      Yi J., Liao K.M., Zhang C.F.. Facile in situ preparation of graphitic-C3N4@carbon paper as an efficient metal-free cathode for nonaqueous Li-O2 battery[J]. ACS Appl.Mater.Interfaces, 2015,7:10823-10827. doi: 10.1021/acsami.5b01727

    73. [73]

      Li J.X., Zou M.Z., Chen L.Z., Huang Z.G., Guan L.H.. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries[J]. J.Mater. Chem.A, 2014,2:10634-10638. doi: 10.1039/c4ta01831a

    74. [74]

      Wang J., Wu Z.X., Han L.L.. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction[J]. Chin.Chem.Lett., 2016,27:597-601. doi: 10.1016/j.cclet.2016.03.011

    75. [75]

      Zhai H.S., Cao L., Xia X.H.. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction[J]. Chin.Chem.Lett., 2013,24:103-106. doi: 10.1016/j.cclet.2013.01.030

    76. [76]

      Li Q., Cao R.G., Cho J., Wu G.. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Phys.Chem.Chem.Phys., 2014,16:13568-13582. doi: 10.1039/c4cp00225c

    77. [77]

      Zhang Z., Bao J., He C.. Hierarchical carbon-nitrogen architectures with both mesopores and macrochannels as excellent cathodes for rechargeable Li-O2 batteries[J]. Adv.Funct.Mater., 2014,24:6826-6833. doi: 10.1002/adfm.v24.43

    78. [78]

      Zhao C.T., Yu C., Liu S.H.. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries[J]. Adv.Funct.Mater., 2015,25:6913-6920. doi: 10.1002/adfm.201503077

    79. [79]

      Shui J.L., Du F., Xue C.M., Li Q., Dai L.M.. Vertically aligned N-doped coral-like carbonfiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J]. ACS Nano, 2014,8:3015-3022. doi: 10.1021/nn500327p

    80. [80]

      Mi R., Li S.M., Liu X.C.. Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li-O2 batteries[J]. J.Mater.Chem.A, 2014,2:18746-18753. doi: 10.1039/C4TA03457K

    81. [81]

      Shui J.L., Karan N.K., Balasubramanian M., Li S.Y., Liu D.J.. Fe/N/C composite in Li-O2 battery:studies of catalytic structure and activity toward oxygen evolution reaction[J]. J.Am.Chem.Soc., 2012,134:16654-16661. doi: 10.1021/ja3042993

    82. [82]

      Zhang Z., Su L.W., Yang M.. A composite of Co nanoparticles highly dispersed on N-rich carbon substrates:an efficient electrocatalyst for Li-O2 battery cathodes[J]. Chem.Commun., 2014,50:776-778. doi: 10.1039/C3CC47149G

    83. [83]

      Wu G., Mack N.H., Gao W.. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes[J]. ACS Nano, 2012,6:9764-9776. doi: 10.1021/nn303275d

    84. [84]

      Prabu M., Ramakrishnan P., Ganesan P., Manthiram A., Shanmugam S.. LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries[J]. Nano Energy, 2015,15:92-103. doi: 10.1016/j.nanoen.2015.04.005

    85. [85]

      Tong S.F., Zheng M.B., Lu Y.. Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries[J]. Chem.Commun., 2015,51:7302-7304. doi: 10.1039/C5CC01114K

    86. [86]

      Luo W.B., Chou S.L., Wang J.Z., Zhai Y.C., Liu H.K.. A metal-free, free-standing, macroporous graphene@g-C3N4 composite air electrode for high-energy lithium oxygen batteries[J]. Small, 2015,11:2817-2824. doi: 10.1002/smll.201403535

    87. [87]

      Li F.J., Tang D.M., Chen Y.. Ru/ITO:a carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano Lett., 2013,13:4702-4707. doi: 10.1021/nl402213h

    88. [88]

      Yang Y., Fei H.L., Ruan G.D.. Carbon-free electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. ACS Appl.Mater.Interfaces, 2015,7:20607-20611. doi: 10.1021/acsami.5b04887

    89. [89]

      Yao X.H., Cheng Q.M., Xie J., Dong Q., Wang D.W.. Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations[J]. ACS Appl.Mater.Interfaces, 2015,7:21948-21955. doi: 10.1021/acsami.5b06592

    90. [90]

      Xu S.M., Zhu Q.C., Long J.. Low-overpotential Li-O2 batteries based on TFSI intercalated Co-Ti layered double oxides[J]. Adv.Funct.Mater., 2016,26:1365-1374. doi: 10.1002/adfm.v26.9

    91. [91]

      Zhang L.L., Zhang X.B., Wang Z.L.. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries[J]. Chem.Commun., 2012,48:7598-7600. doi: 10.1039/c2cc33933a

    92. [92]

      Asadi M., Kumar B., Liu C.. Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries[J]. ACS Nano, 2016,10:2167-2175. doi: 10.1021/acsnano.5b06672

    93. [93]

      Zhang T., Liao K.M., He P., Zhou H.S.. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ.Sci., 2016,9:1024-1030. doi: 10.1039/C5EE02803E

    94. [94]

      Liu Y., Li N., Wu S.C.. Reducing the charging voltage of a Li-O2 battery to 1.9 V by incorporating a photocatalyst[J]. Energy Environ.Sci., 2015,8:2664-2667. doi: 10.1039/C5EE01958C

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    5. [5]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    6. [6]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    7. [7]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    8. [8]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    9. [9]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    10. [10]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    11. [11]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(0)
  • Abstract views(583)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return