Citation: Parekh Nikhil M., Mistry Bhupendra M., Pandurangan Muthuraman, Shinde Surendra K., Patel Rahul V.. Investigation of anticancer potencies of newly generated Schiff base imidazolylphenylheterocyclic-2-ylmethylenethiazole-2-amines[J]. Chinese Chemical Letters, ;2017, 28(3): 602-606. doi: 10.1016/j.cclet.2016.10.021 shu

Investigation of anticancer potencies of newly generated Schiff base imidazolylphenylheterocyclic-2-ylmethylenethiazole-2-amines

  • Corresponding author: Patel Rahul V., rahul.svnit11@gmail.com
  • 1Authors contributed equally.
  • Received Date: 8 June 2016
    Revised Date: 23 August 2016
    Accepted Date: 8 September 2016
    Available Online: 15 March 2016

Figures(1)

  • A new series of multi-heterocyclic Schiff base was constructed starting from 4'-(imidazol-1-yl)-acetophenone which was converted to its 2-bromoethanone precursor which on cyclic condensation with thiourea yielded final thiazol-2-amine intermediate (3) to be reacted with substituted aldehydes to generate final imidazolylphenylheterocyclic-2-ylmethylenethiazole-2-amines (4a-4i). New Schiff base was investigated for their in vitro cytotoxic efficacies against a panel of three human cancer cell lines namely, MCF7 (human breast cancer), HCT116 (human colon cancer), and DU145 (human prostate cancer) and one normal skin fibroblast (SF). Most of these synthetic derivatives shown important cytotoxic actions against individual carcinoma cell line collections, but weak actions against SF, which is as anticipated. Observations of SAR suggested that the difference in the characteristics of substituents attached to the Schiff base function leads to the interesting variations within pharmacological effects of resultant molecular systems. Structural analysis performed using FT-IR, 1H NMR, 13C NMR spectroscopy and CHN analysis for final potent anticancer Schiff base, which warrant further investigations.
  • 加载中
    1. [1]

      (a) H. Schiff, Mittheilungen aus dem universitätslaboratorium in Pisa:eine neue reihe organischer Basen, Eur. J. Org. Chem. 131(1864) 118-119;
      (b) C.M. Da Silva, D.L. Da Silva, L.V. Modolo, et al., Schiff bases:a short review of their antimicrobial activities, J. Adv. Res. 2(2011) 1-8.

    2. [2]

      Mohammed I.A., Subrahmanyam E.V.S.. Synthesis, characterization and antimicrobial activity of some substituted N'-arylidene-2-(quinolin-8-yloxy) aceto hydrazides[J]. Acta Pharm. Sci., 2009,51:163-168.  

    3. [3]

      A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, Schiff bases:a versatile pharmacophore, J. Catal. 2013(2013) Article ID 893512.

    4. [4]

      Vashi K., Naik H.B.. Synthesis of novel Schiff base and azetidinone derivatives and their antibacterial activity[J]. Eur. J. Chem., 2004,1:272-276.  

    5. [5]

      Zhang L., Peng X.M., Damu G.L., Geng R.X., Zhou C.H.. Comprehensive review in current developments of imidazole-based medicinal chemistry[J]. Med. Res. Rev., 2014,34:340-437. doi: 10.1002/med.2014.34.issue-2

    6. [6]

      Gupta V., Kant V.. A review on biological activity of imidazole and thiazole moieties and their derivatives[J]. Sci. Int., 2013,1:253-260. doi: 10.17311/sciintl.2013.253.260

    7. [7]

      El-Salam N.M.A., Mostafa M.S., Ahmed G.A., Alothman O.Y.. Synthesis and antimicrobial activities of some new heterocyclic compounds based on 6-chloropyridazine-3(2H)-thione[J]. J. Chem., 2013,2013890617.

    8. [8]

      Azab M.E., Youssef M.M., El-Bordany E.A.. Synthesis and antibacterial evaluation of novel heterocyclic compounds containing a sulfonamido moiety[J]. Molecules, 2013,18:832-844. doi: 10.3390/molecules18010832

    9. [9]

      Salem M.S., Sakr S.I., El-Senousy W.M., Madkour H.M.F.. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety[J]. Arch. Pharm., 2013,346:766-773. doi: 10.1002/ardp.v346.10

    10. [10]

      Cao X.F., Sun Z.S., Cao Y.B.. Design, synthesis, and structure-activity relationship studies of novel fused heterocycles-linked triazoles with good activity and water solubility[J]. J. Med. Chem., 2014,57:3687-3706. doi: 10.1021/jm4016284

    11. [11]

      El-Sawy E.R., Ebaid M.S., Abo-Salem H.M., Al-Sehemi A.G., Mandour A.H.. Synthesis, anti-inflammatory, analgesic and anticonvulsant activities of some new 4, 6-dimethoxy-5-(heterocycles) benzofuran starting from naturally occurring visnagin[J]. Arab. J. Chem., 2014,7:914-923. doi: 10.1016/j.arabjc.2012.12.041

    12. [12]

      Chen Y., Yu K., Tan N.Y.. Synthesis, characterization and anti-proliferative activity of heterocyclic hypervalent organoantimony compounds[J]. Eur. J. Med. Chem., 2014,79:391-398. doi: 10.1016/j.ejmech.2014.04.026

    13. [13]

      El-Sawy E.R., Mandour A.H., El-Hallouty S.M., Shaker K.H., Abo-Salem H.M.. Synthesis, antimicrobial and anticancer activities of some new Nmethylsulphonyl and N-benzenesulphonyl-3-indolyl heterocycles:1st Cancer Update[J]. Arab. J. Chem., 2013,6:67-78. doi: 10.1016/j.arabjc.2012.04.003

    14. [14]

      Mabkhot Y.N., Barakat A., Al-Majid A.M.. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom[J]. Chem. Cent. J., 2013(7)112.  

    15. [15]

      WHO, World Health Organization, Cancer Accessed from, http://www.who.int/cancer/en/.

    16. [16]

      Kidwai M., Venkataramanan R., Mohan R., Sapra P.. Cancer chemotherapy and heterocyclic compounds[J]. Curr. Med. Chem., 2002,9:1209-1228. doi: 10.2174/0929867023370059

    17. [17]

      Salimon J., Salih N., Yousif E., Hameed A., Ibraheem H.. Synthesis and antibacterial activity of some new 1, 3, 4-oxadiazole and 1, 3, 4-thiadiazole derivatives[J]. Aust. J. Basic Appl. Sci., 2010,4:2016-2021.

    18. [18]

      Mohamed H.A., Lake B.R., Laing T., Phillips R.M., Willans C.E.. Synthesis and anticancer activity of silver (Ⅰ)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine[J]. Dalton Trans., 2015,44:7563-7569. doi: 10.1039/C4DT03679D

    19. [19]

      Rajasekaran S., Rao G.K., Pai P.N.S., Ranjan A.. Design, synthesis, antibacterial and in vitro antioxidant activity of substituted 2H-benzopyran-2-one derivatives[J]. Int. J. ChemTech Res., 2011,3:555-559.

    20. [20]

      Zhou X., Shao L., Jin Z.. Synthesis and antitumor activity evaluation of some schiff bases derived from 2-aminothiazole derivatives[J]. Heteroat. Chem., 2007,18:55-59. doi: 10.1002/(ISSN)1098-1071

    21. [21]

      Swamy P.M.G., Sri B.R., Giles D.. Synthesis, anticancer, and molecular docking studies of pyranone derivatives[J]. Med. Chem. Res., 2013,22:4909-4919. doi: 10.1007/s00044-013-0478-7

    22. [22]

      Shruthy V.S., Shakkeela Y.. In silico design, docking, synthesis and evaluation of thiazole schiff bases[J]. Int. J. Pharm. Pharm. Sci., 2014,6:271-275.  

    23. [23]

      J. McCauley, A. Zivanovic, D. Skropeta, Bioassays for anticancer activities, in:U. Roessner, D.A. Dias (Eds.), Methods in Molecular Biology, Metabolomics Tools for Natural Product Discovery, Humana Press, 2013, pp. 191-205.

    24. [24]

      Bhosale P.P., Chavan R.S., Bhosale A.V.. Design, synthesis, biological evaluation of thiazolyl Schiff base derivatives as novel anti-inflammatory agents[J]. Ind. J. Chem., 2012,51B:1649-1654.  

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    7. [7]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    8. [8]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    9. [9]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    11. [11]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    12. [12]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    13. [13]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    14. [14]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    15. [15]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    16. [16]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    17. [17]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    18. [18]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    19. [19]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    20. [20]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

Metrics
  • PDF Downloads(8)
  • Abstract views(805)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return