Citation:
Anees A. Ansari. Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles[J]. Chinese Chemical Letters,
;2017, 28(3): 651-657.
doi:
10.1016/j.cclet.2016.10.010
-
A simple polyol and sol-gel Stober process were employed for synthesis of YF3:Tb+ (core), YF3:Tb+@LaF3 (core/shell) and YF3:Tb+@LaF3@SiO2 (core/shell/SiO2) nanoparticles (NPs). The phase purity, crystalinity, morphology, optical and photoluminescence properties were investigated and discussed with the help of various analytical techniques including X-ray diffraction pattern, FE-transmission electron microscopy (TEM), FTIR, UV/vis absorption, energy band gap and emission spectra. XRD and FE-TEM studies indicate the formation of core/shell nanostructure and 10 nm thick amorphous silica surface coating surrounding the core-NPs, which is also confirmed by FTIR spectral results. The surface modifications of core-NPs significantly affect the optical features in the form of energy band gap, which were correlated with particle size of the nanomaterials. The comparative emission spectral results show that after inert layer coating the luminescent core-NPs display stronger emission intensity in respect to core and silica coated core/shell/SiO2-NPs. The solubility character along with colloidal stability was improved after silica surface modification, whereas luminescent intensity was suppressed causing the surface functionalized with high energy silanol (Si-OH) molecules. These novel luminescent nanomaterials with enhanced emission intensity and excellent solubility in aqueous solvents would be potentially useful for fluorescence bioimaging/optical bio-probe etc.
-
-
-
[1]
Yang H., Santra S., Walter G.A., Holloway P.H.. GdⅢ-functionalized fluorescent quantum dots as multimodal imaging probes[J]. Adv. Mater., 2006,18:2890-2894. doi: 10.1002/(ISSN)1521-4095
-
[2]
Ye Z.Q., Tan M.Q., Wang G.L., Yuan J.Q.. Novel fluorescent europium chelatedoped silica nanoparticles:preparation, characterization and time-resolved fluorometric application[J]. J. Mater. Chem., 2004,14:851-856. doi: 10.1039/b311905j
-
[3]
Zhang C.L., Ji X.H., Zhang Y.. One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo[J]. Anal. Chem., 2013,85:5843-5849. doi: 10.1021/ac400606e
-
[4]
Reiss P., Protière M., Li L.. Core/shell semiconductor nanocrystals[J]. Small, 2009,5:154-168. doi: 10.1002/smll.200800841
-
[5]
Huhtinen P., Kivelä M., Kuronen O.. Synthesis, characterization, and application of Eu (Ⅲ), Tb (Ⅲ), Sm (Ⅲ), and Dy (Ⅲ) lanthanide chelate nanoparticle labels[J]. Anal. Chem., 2005,77:2643-2648. doi: 10.1021/ac048360i
-
[6]
Chen Z., Zheng W., Huang P.. Lanthanide-doped luminescent nanobioprobes for the detection of tumor markers[J]. Nanoscale, 2015,7:4274-4290. doi: 10.1039/C4NR05697C
-
[7]
Schultz S., Smith D.R., Mock J.J., Schultz D.A.. Single-target molecule detection with nonbleaching multicolor optical immunolabels[J]. Proc. Natl. Acad. Sci. U. S. A., 2000,97:996-1001. doi: 10.1073/pnas.97.3.996
-
[8]
M.A. Hayat, Colloidal Gold:Principles, Methods and Applications, Academic Press, New York, 1989.
-
[9]
Hemmilä I., Laitala V.. Progress in lanthanides as luminescent probes[J]. J. Fluoresc., 2005,15:529-542. doi: 10.1007/s10895-005-2826-6
-
[10]
Stouwdam J.W., van Veggel F.C.J.M.. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles[J]. Nano Lett., 2002,2:733-737. doi: 10.1021/nl025562q
-
[11]
Yan R.X., Li Y.D.. Down/up conversion in Ln3+ doped YF3 nanocrystals[J]. Adv. Funct. Mater., 2005,15:763-770. doi: 10.1002/(ISSN)1616-3028
-
[12]
Zhong S.L., Lu Y., Gao M.R.. Monodisperse mesocrystals of YF3 and Ce3+/Ln3+(Ln=Tb, Eu) co-activated YF3:shape control synthesis, luminescent properties, and biocompatibility[J]. Chem. Eur. J., 2012,18:5222-5231. doi: 10.1002/chem.v18.17
-
[13]
Peng C., Li C.X., Li G.G., Li S.W., Lin J.. YF3:Ln3+(Ln=Ce, Tb, Pr) submicrospindles:hydrothermal synthesis and luminescence properties[J]. Dalton Trans., 2012,41:8660-8668. doi: 10.1039/c2dt30325f
-
[14]
Liu G.X., Li X., Dong X.T., Wang J.X.. Architectures of YF3:Eu3+ solid and hollow sub-microspheres:a facile arginine-assisted hydrothermal synthesis and luminescence properties[J]. J. Nanopart. Res., 2011,13:4025-4034. doi: 10.1007/s11051-011-0332-0
-
[15]
Nuñez N.O., Ocaña M.. An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles[J]. Nanotechnology, 2007,18455606. doi: 10.1088/0957-4484/18/45/455606
-
[16]
Ansari A.A., Yadav R., Rai S.B.. Enhanced luminescence efficiency of aqueous dispersible porous NaYF4:Yb/Er nanoparticles and the effect of surface coating[J]. RSC Adv., 2016,6:22074-22082. doi: 10.1039/C6RA00265J
-
[17]
Parchur A.K., Prasad A.I., Ansari A.A., Rai S.B., Ningthoujam R.S.. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles:annealing effect, polar medium dispersible, polymer film and core-shell formation[J]. Dalton Trans., 2012,41:11032-11045. doi: 10.1039/c2dt31257c
-
[18]
Vetrone F., Naccache R., Mahalingam V., Morgan C.G., Capobianco J.A.. The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv. Funct. Mater., 2009,19:2924-2929. doi: 10.1002/adfm.v19:18
-
[19]
Wang F., Deng R.R., Wang J.. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat. Mater., 2011,10:968-973. doi: 10.1038/nmat3149
-
[20]
Boyer J.C., Gagnon J., Cuccia L.A., Capobianco J.A.. Synthesis, characterization, and spectroscopy of NaGdF4:Ce3+, Tb3+/NaYF4 core/shell nanoparticles[J]. Chem. Mater., 2007,19:3358-3360. doi: 10.1021/cm070865c
-
[21]
Ansari A.A., Parchur A.K., Alam M., Labis J., Azzeer A.. Influence of surface coating on structural and photoluminescent properties of CaMoO4:Pr nanoparticles[J]. J. Fluoresc., 2014,24:1253-1262. doi: 10.1007/s10895-014-1409-9
-
[22]
Ansari A.A., Alam M., Labis J.P.. Luminescent mesoporous LaVO4:Eu3+ core-shell nanoparticles:synthesis, characterization, biocompatibility and their cytotoxicity[J]. J. Mater. Chem., 2011,21:19310-19316. doi: 10.1039/c1jm12871j
-
[23]
Kömpe K., Borchert H., Storz J.. Green-emitting CePO4:Tb/LaPO4 coreshell nanoparticles with 70% photoluminescence quantum yield[J]. Angew. Chem. Int. Ed., 2003,42:5513-5516. doi: 10.1002/(ISSN)1521-3773
-
[24]
Yi G.S., Chow G.M.. Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem. Mater., 2007,19:341-343. doi: 10.1021/cm062447y
-
[25]
Abel K.A., Boyer J.C., van Veggel F.C.J.M.. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure[J]. J. Am. Chem. Soc., 2009,131:14644-14645. doi: 10.1021/ja906971y
-
[26]
Ansari A.A., Singh S.P., Singh N., Malhotra B.D.. Synthesis of optically active silica-coated NdF3 core-shell nanoparticles[J]. Spectrochim. Acta A, 2012,86:432-436. doi: 10.1016/j.saa.2011.10.063
-
[27]
Ansari A.A., Alam M.. Optical and structural studies of CaMoO4:Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core-shell nanoparticles[J]. J. Luminesc., 2015,157:257-263. doi: 10.1016/j.jlumin.2014.09.001
-
[28]
Sarkar S., Mahalingam V.. Tuning the crystalline phase and morphology of the YF3:Eu3+ microcrystals through fluoride source[J]. CrystEngComm, 2013,15:5750-5755. doi: 10.1039/c3ce40554k
-
[29]
Wang L.Y., Zhang Y., Zhu Y.Y.. One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals[J]. Nano Res., 2010,3:317-325. doi: 10.1007/s12274-010-1035-z
-
[30]
Darbandi M., Nann T.. One-potsynthesis of YF3@silica core/shell nanoparticles[J]. Chem. Commun., 2006:776-778.
-
[31]
Tauc J., Menth A.. States in the gap[J]. J. Non-Cryst. Solids, 1972,8-10:569-585. doi: 10.1016/0022-3093(72)90194-9
-
[32]
Li Y.C., Chang Y.H., Chang Y.S., Lin Y.J., Laing C.H.. Luminescence and energy transfer properties of Gd3+ and Tb3+ in LaAlGe2O7[J]. J. Phys. Chem. C, 2007,111:10682-10688.
-
[33]
Krol D.M., van Stapele R.P., Haanstra J.H.. Luminescence and absorptionof Tb3+ in mo A12O3·B2O3·Tb2O3 glasses[J]. J. Luminesc., 1987,37:293-302. doi: 10.1016/0022-2313(87)90011-1
-
[34]
Cavalli E., Boutinaud P., Mahiou R., Bettinelli M., Dorenbos P.. Luminescence dynamics in Tb3+-doped CaWO4 and CaMoO4 crystals[J]. Inorg. Chem., 2010,49:4916-4921. doi: 10.1021/ic902445c
-
[35]
Ansari A.A., Labis J.P.. One-pot synthesis and photoluminescence properties of luminescent functionalized mesoporous SiO2@Tb (OH)3 core-shell nanospheres[J]. J. Mater. Chem., 2012,22:16649-16656. doi: 10.1039/c2jm33583b
-
[36]
Richardson F.S.. Terbium (Ⅲ) and europium (Ⅲ) ions as luminescent probes and stains for biomolecular systems[J]. Chem. Rev., 1982,82:541-552. doi: 10.1021/cr00051a004
-
[1]
-
-
-
[1]
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
-
[2]
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
-
[3]
Lu Li , Suticha Chunta , Xianzi Zheng , Haisheng He , Wei Wu , Yi Lu . β-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662
-
[4]
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
-
[5]
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
-
[6]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[7]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[8]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[9]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[10]
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
-
[11]
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
-
[12]
Jiayao Li , Xinru Peng , Shiwei Yin , Changwei Wang , Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213
-
[13]
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
-
[14]
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
-
[15]
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
-
[16]
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
-
[17]
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
-
[18]
Jichun Li , Zhengren Wang , Yu Deng , Hongxiu Yu , Yonghui Deng , Xiaowei Cheng , Kaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111
-
[19]
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
-
[20]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(666)
- HTML views(32)