Citation: Anees A. Ansari. Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(3): 651-657. doi: 10.1016/j.cclet.2016.10.010 shu

Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles


  • Author Bio: E-mail address: aneesaansari@gmail.com (A.A. Ansari)
  • Received Date: 17 June 2016
    Revised Date: 6 August 2016
    Accepted Date: 14 September 2016
    Available Online: 15 March 2016

Figures(5)

  • A simple polyol and sol-gel Stober process were employed for synthesis of YF3:Tb+ (core), YF3:Tb+@LaF3 (core/shell) and YF3:Tb+@LaF3@SiO2 (core/shell/SiO2) nanoparticles (NPs). The phase purity, crystalinity, morphology, optical and photoluminescence properties were investigated and discussed with the help of various analytical techniques including X-ray diffraction pattern, FE-transmission electron microscopy (TEM), FTIR, UV/vis absorption, energy band gap and emission spectra. XRD and FE-TEM studies indicate the formation of core/shell nanostructure and 10 nm thick amorphous silica surface coating surrounding the core-NPs, which is also confirmed by FTIR spectral results. The surface modifications of core-NPs significantly affect the optical features in the form of energy band gap, which were correlated with particle size of the nanomaterials. The comparative emission spectral results show that after inert layer coating the luminescent core-NPs display stronger emission intensity in respect to core and silica coated core/shell/SiO2-NPs. The solubility character along with colloidal stability was improved after silica surface modification, whereas luminescent intensity was suppressed causing the surface functionalized with high energy silanol (Si-OH) molecules. These novel luminescent nanomaterials with enhanced emission intensity and excellent solubility in aqueous solvents would be potentially useful for fluorescence bioimaging/optical bio-probe etc.
  • 加载中
    1. [1]

      Yang H., Santra S., Walter G.A., Holloway P.H.. Gd-functionalized fluorescent quantum dots as multimodal imaging probes[J]. Adv. Mater., 2006,18:2890-2894. doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Ye Z.Q., Tan M.Q., Wang G.L., Yuan J.Q.. Novel fluorescent europium chelatedoped silica nanoparticles:preparation, characterization and time-resolved fluorometric application[J]. J. Mater. Chem., 2004,14:851-856. doi: 10.1039/b311905j

    3. [3]

      Zhang C.L., Ji X.H., Zhang Y.. One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo[J]. Anal. Chem., 2013,85:5843-5849. doi: 10.1021/ac400606e

    4. [4]

      Reiss P., Protière M., Li L.. Core/shell semiconductor nanocrystals[J]. Small, 2009,5:154-168. doi: 10.1002/smll.200800841

    5. [5]

      Huhtinen P., Kivelä M., Kuronen O.. Synthesis, characterization, and application of Eu (Ⅲ), Tb (Ⅲ), Sm (Ⅲ), and Dy (Ⅲ) lanthanide chelate nanoparticle labels[J]. Anal. Chem., 2005,77:2643-2648. doi: 10.1021/ac048360i

    6. [6]

      Chen Z., Zheng W., Huang P.. Lanthanide-doped luminescent nanobioprobes for the detection of tumor markers[J]. Nanoscale, 2015,7:4274-4290. doi: 10.1039/C4NR05697C

    7. [7]

      Schultz S., Smith D.R., Mock J.J., Schultz D.A.. Single-target molecule detection with nonbleaching multicolor optical immunolabels[J]. Proc. Natl. Acad. Sci. U. S. A., 2000,97:996-1001. doi: 10.1073/pnas.97.3.996

    8. [8]

      M.A. Hayat, Colloidal Gold:Principles, Methods and Applications, Academic Press, New York, 1989.

    9. [9]

      Hemmilä I., Laitala V.. Progress in lanthanides as luminescent probes[J]. J. Fluoresc., 2005,15:529-542. doi: 10.1007/s10895-005-2826-6

    10. [10]

      Stouwdam J.W., van Veggel F.C.J.M.. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles[J]. Nano Lett., 2002,2:733-737. doi: 10.1021/nl025562q

    11. [11]

      Yan R.X., Li Y.D.. Down/up conversion in Ln3+ doped YF3 nanocrystals[J]. Adv. Funct. Mater., 2005,15:763-770. doi: 10.1002/(ISSN)1616-3028

    12. [12]

      Zhong S.L., Lu Y., Gao M.R.. Monodisperse mesocrystals of YF3 and Ce3+/Ln3+(Ln=Tb, Eu) co-activated YF3:shape control synthesis, luminescent properties, and biocompatibility[J]. Chem. Eur. J., 2012,18:5222-5231. doi: 10.1002/chem.v18.17

    13. [13]

      Peng C., Li C.X., Li G.G., Li S.W., Lin J.. YF3:Ln3+(Ln=Ce, Tb, Pr) submicrospindles:hydrothermal synthesis and luminescence properties[J]. Dalton Trans., 2012,41:8660-8668. doi: 10.1039/c2dt30325f

    14. [14]

      Liu G.X., Li X., Dong X.T., Wang J.X.. Architectures of YF3:Eu3+ solid and hollow sub-microspheres:a facile arginine-assisted hydrothermal synthesis and luminescence properties[J]. J. Nanopart. Res., 2011,13:4025-4034. doi: 10.1007/s11051-011-0332-0

    15. [15]

      Nuñez N.O., Ocaña M.. An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles[J]. Nanotechnology, 2007,18455606. doi: 10.1088/0957-4484/18/45/455606

    16. [16]

      Ansari A.A., Yadav R., Rai S.B.. Enhanced luminescence efficiency of aqueous dispersible porous NaYF4:Yb/Er nanoparticles and the effect of surface coating[J]. RSC Adv., 2016,6:22074-22082. doi: 10.1039/C6RA00265J

    17. [17]

      Parchur A.K., Prasad A.I., Ansari A.A., Rai S.B., Ningthoujam R.S.. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles:annealing effect, polar medium dispersible, polymer film and core-shell formation[J]. Dalton Trans., 2012,41:11032-11045. doi: 10.1039/c2dt31257c

    18. [18]

      Vetrone F., Naccache R., Mahalingam V., Morgan C.G., Capobianco J.A.. The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv. Funct. Mater., 2009,19:2924-2929. doi: 10.1002/adfm.v19:18

    19. [19]

      Wang F., Deng R.R., Wang J.. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat. Mater., 2011,10:968-973. doi: 10.1038/nmat3149

    20. [20]

      Boyer J.C., Gagnon J., Cuccia L.A., Capobianco J.A.. Synthesis, characterization, and spectroscopy of NaGdF4:Ce3+, Tb3+/NaYF4 core/shell nanoparticles[J]. Chem. Mater., 2007,19:3358-3360. doi: 10.1021/cm070865c

    21. [21]

      Ansari A.A., Parchur A.K., Alam M., Labis J., Azzeer A.. Influence of surface coating on structural and photoluminescent properties of CaMoO4:Pr nanoparticles[J]. J. Fluoresc., 2014,24:1253-1262. doi: 10.1007/s10895-014-1409-9

    22. [22]

      Ansari A.A., Alam M., Labis J.P.. Luminescent mesoporous LaVO4:Eu3+ core-shell nanoparticles:synthesis, characterization, biocompatibility and their cytotoxicity[J]. J. Mater. Chem., 2011,21:19310-19316. doi: 10.1039/c1jm12871j

    23. [23]

      Kömpe K., Borchert H., Storz J.. Green-emitting CePO4:Tb/LaPO4 coreshell nanoparticles with 70% photoluminescence quantum yield[J]. Angew. Chem. Int. Ed., 2003,42:5513-5516. doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Yi G.S., Chow G.M.. Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem. Mater., 2007,19:341-343. doi: 10.1021/cm062447y

    25. [25]

      Abel K.A., Boyer J.C., van Veggel F.C.J.M.. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure[J]. J. Am. Chem. Soc., 2009,131:14644-14645. doi: 10.1021/ja906971y

    26. [26]

      Ansari A.A., Singh S.P., Singh N., Malhotra B.D.. Synthesis of optically active silica-coated NdF3 core-shell nanoparticles[J]. Spectrochim. Acta A, 2012,86:432-436. doi: 10.1016/j.saa.2011.10.063

    27. [27]

      Ansari A.A., Alam M.. Optical and structural studies of CaMoO4:Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core-shell nanoparticles[J]. J. Luminesc., 2015,157:257-263. doi: 10.1016/j.jlumin.2014.09.001

    28. [28]

      Sarkar S., Mahalingam V.. Tuning the crystalline phase and morphology of the YF3:Eu3+ microcrystals through fluoride source[J]. CrystEngComm, 2013,15:5750-5755. doi: 10.1039/c3ce40554k

    29. [29]

      Wang L.Y., Zhang Y., Zhu Y.Y.. One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals[J]. Nano Res., 2010,3:317-325. doi: 10.1007/s12274-010-1035-z

    30. [30]

      Darbandi M., Nann T.. One-potsynthesis of YF3@silica core/shell nanoparticles[J]. Chem. Commun., 2006:776-778.

    31. [31]

      Tauc J., Menth A.. States in the gap[J]. J. Non-Cryst. Solids, 1972,8-10:569-585. doi: 10.1016/0022-3093(72)90194-9

    32. [32]

      Li Y.C., Chang Y.H., Chang Y.S., Lin Y.J., Laing C.H.. Luminescence and energy transfer properties of Gd3+ and Tb3+ in LaAlGe2O7[J]. J. Phys. Chem. C, 2007,111:10682-10688.

    33. [33]

      Krol D.M., van Stapele R.P., Haanstra J.H.. Luminescence and absorptionof Tb3+ in mo A12O3·B2O3·Tb2O3 glasses[J]. J. Luminesc., 1987,37:293-302. doi: 10.1016/0022-2313(87)90011-1

    34. [34]

      Cavalli E., Boutinaud P., Mahiou R., Bettinelli M., Dorenbos P.. Luminescence dynamics in Tb3+-doped CaWO4 and CaMoO4 crystals[J]. Inorg. Chem., 2010,49:4916-4921. doi: 10.1021/ic902445c

    35. [35]

      Ansari A.A., Labis J.P.. One-pot synthesis and photoluminescence properties of luminescent functionalized mesoporous SiO2@Tb (OH)3 core-shell nanospheres[J]. J. Mater. Chem., 2012,22:16649-16656. doi: 10.1039/c2jm33583b

    36. [36]

      Richardson F.S.. Terbium (Ⅲ) and europium (Ⅲ) ions as luminescent probes and stains for biomolecular systems[J]. Chem. Rev., 1982,82:541-552. doi: 10.1021/cr00051a004

  • 加载中
    1. [1]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    2. [2]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    3. [3]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    4. [4]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    5. [5]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    10. [10]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    11. [11]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    12. [12]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    13. [13]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    14. [14]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    15. [15]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    16. [16]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    17. [17]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    18. [18]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    19. [19]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    20. [20]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return