Citation: Chihaoui Nejla, Hamdi Besma, Zouari Ridha. Structural elucidation, theoretical investigation using DFT calculations, thermal and dielectric analyses of new zinc (Ⅱ) based inorganic-organic hybrid[J]. Chinese Chemical Letters, ;2017, 28(3): 642-650. doi: 10.1016/j.cclet.2016.10.002 shu

Structural elucidation, theoretical investigation using DFT calculations, thermal and dielectric analyses of new zinc (Ⅱ) based inorganic-organic hybrid

  • Corresponding author: Chihaoui Nejla, nchihawi@gmail.com
  • Received Date: 5 July 2016
    Revised Date: 21 September 2016
    Accepted Date: 27 September 2016
    Available Online: 29 March 2016

Figures(8)

  • A novel interesting d10 metal hybrid, [1, 2-C6H10(NH3)2]ZnCl4; 1, 2-diammoniumcyclohexane tetrachlorozincate (Ⅱ) was grown, structurally characterized and their vibrational as well as thermal and dielectric proprieties were studied. A preliminary single crystal X-ray diffraction structural analysis has revealed that the latter crystallizes in the monoclinic system (space group C2/c). Its unit cell dimensions are a=32.394(9) Å, b=12.217(4) Å, c=10.175(3) Å, β=97.852(13)° with Z=12 and the refinement converged to R=0.034 and ωR=0.065. Hirshfeld surface analyses, especially dnorm surface and fingerprint plots were used for decoding intermolecular interactions in the crystal network. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the present compound were theoretically examined by the DFT/B3LYP method with the LanL2DZ basis set. The thermal and dielectric analyses suggested the presence of ferroelectric phase transition at 314 K.
  • 加载中
    1. [1]

      Ben Gzaiel M., Oueslati A., Lhoste J., Gargouri M., Bulou A.. Synthesis, crystal structure and high temperature phase transition in the new organic-inorganic hybrid[N (C4H9)4]3Zn2Cl7H2O crystals[J]. J. Mol. Struct., 2015,1089:153-160. doi: 10.1016/j.molstruc.2015.01.040

    2. [2]

      Zhao J.A., Guo Y., Hu J.Y.. Potential anticancer activity of benzimidazolebased mono/dinuclear Zn (Ⅱ) complexes towards human carcinoma cells[J]. Polyhedron, 2015,102:163-172. doi: 10.1016/j.poly.2015.09.057

    3. [3]

      Chihaoui N., Hamdi B., Dammak T., Zouari R.. Molecular structure, experimental and theoretical spectroscopic characterization and non-linear optical properties studies of a new non-centrosymmetric hybrid material[J]. J. Mol. Struct., 2016,1123:144-152. doi: 10.1016/j.molstruc.2016.06.031

    4. [4]

      Chihaoui N., Hamdi B., Ben Salah A., Zouari R.. A new mononuclear complex:structure, vibrational (FT-IR and Raman), Hirshfeld surfaces analysis, electrical properties and equivalent circuit[J]. J. Phys. Chem. Biophys, 2016,6216.

    5. [5]

      Berg J.. Potential metal-binding domains in nucleic acid binding proteins[J]. Science, 1986,232:485-487. doi: 10.1126/science.2421409

    6. [6]

      Prince R.H., Wolley P.R.. Metal ion function in carbonic anhydrase[J]. Angew. Chem. Int. Ed. Engl., 1972,11:408-417. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Luo B., Kucera B.E., Gladfelter W.L.. Syntheses and X-ray crystal structures of zinc complexes with an amido-diamine ligand[J]. Polyhedron, 2006,25:279-285. doi: 10.1016/j.poly.2005.06.041

    8. [8]

      Scozzafava A., Menabuoni L., Mincione F., Mincione G., Supuran C.T.. Carbonic anhydrase inhibitors:synthesis of sulfonamides incorporating dtpa tails and of their zinc complexes with powerful topical antiglaucoma properties[J]. Bioorg. Med. Chem. Lett., 2011,11:575-582.  

    9. [9]

      Long G.V., Harding M.M., Turner P.. X-ray structure of the zinc complex of the central metal chelation site of the antitumour drug streptonigrin[J]. Polyhedron, 2000,19:1067-1071. doi: 10.1016/S0277-5387(00)00352-1

    10. [10]

      Puccetti L., Fasolis G., Vullo D.. Ⅱ Ⅸ, and Ⅻ with Schiff's bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes[J]. Bioorg. Med. Chem. Lett., 2005,15:3096-3101. doi: 10.1016/j.bmcl.2005.04.055

    11. [11]

      Kaizer J., Pap J., Speier G.. Synthesis, structure and catecholase activity of dinuclear copper and zinc complexes with an N3-ligand[J]. J. Inorg. Biochem., 2002,91:190-198. doi: 10.1016/S0162-0134(02)00459-2

    12. [12]

      Sénèque O., Giorgi M., Reinaud O.. Hydrogen bonding and CH/π interactions for the stabilization of biomimetic zinc complexes:first examples of X-ray characterized alcohol and amide adducts to a tetrahedral dicationic Zn center[J]. Chem. Commun., 2001:984-985.  

    13. [13]

      Emami S., Hosseinimehr S.J., Taghdisi S.M., Akhlaghpoor S.. Kojic acid and its manganese and zinc complexes as potential radioprotective agents[J]. Bioorg. Med. Chem. Lett., 2007,17:45-48. doi: 10.1016/j.bmcl.2006.09.097

    14. [14]

      Li J.H., Wang J.T., Zhang L.Y.. Structure, speciation, DNA binding and nuclease activity of two bipyridyl-zinc complexes bearing trimethylaminomethyl groups[J]. Inorg. Chim. Acta, 2009,362:1918-1924. doi: 10.1016/j.ica.2008.09.011

    15. [15]

      Tarushi A., Psomas G., Raptopoulou C.P., Kessissoglou D.P.. Zinc complexes of the antibacterial drug oxolinic acid:structure and DNA binding properties[J]. J. Inorg. Biochem., 2009,103:898-905. doi: 10.1016/j.jinorgbio.2009.03.007

    16. [16]

      Fielden J., Gunning P.T., Long D.L.. Anion control of isomerism, crystal packing and binding properties in a mononuclear zinc complex[J]. Polyhedron, 2006,25:3474-3480. doi: 10.1016/j.poly.2006.06.044

    17. [17]

      Xia W.S., Huang C.H., Zhou D.J.. Photoelectric conversion from a hemicyanine dye containing zinc complex in a Langmuir-Blodgett film[J]. Langmuir, 1997,13:80-84. doi: 10.1021/la960108l

    18. [18]

      Firouzabadi H., Adibi M., Zeynizadeh B.. Modified borohydride agents; efficient reduction of azides with (1. 4-diazabicyclo[2.2.2] octane) (tetrahydroborato) zinc complex[Zn (BH4)2(Dabaco)] and methyltriphenylphosphonium tetrahydroborate[MePh3P+BH4-][J]. Synth. Commun., 1998,28:1257-1273. doi: 10.1080/00397919808005968

    19. [19]

      Fan R.Q., Zhu D.S., Mu Y.. Syntheses, structures, and luminescent properties of[bis (iminoalkyl) pyridine]cadmium (Ⅱ) complexes[J]. Eur. J. Inorg. Chem., 2004,2004:4891-4897. doi: 10.1002/(ISSN)1099-0682

    20. [20]

      Amine Fersi M., Chaabane I., Gargouri M., Bulou A.. Structure and characterization of the phase transition of the new organic-inorganic hybrid compound[C8H10NO]2[ZnCl4][J]. Polyhedron, 2015,85:41-47. doi: 10.1016/j.poly.2014.08.056

    21. [21]

      Xie Y.M., Chen W.T., Wu J.H.. Synthesis structure, and physical properties of[Sm (C6NO2H5)3(H2O)2]2n.(H5O2)n(ZnCl5)n(ZnCl4)2n·(H2O)2n with unprecedented ZnCl53- species[J]. J. Solid State Chem., 2008,181:1853-1858. doi: 10.1016/j.jssc.2008.04.002

    22. [22]

      Ali Khan S.R., Huang S.R., Shamsuddin S.. Synthesis, characterization and cytotoxicity of new platinum (Ⅳ) axial carboxylate complexes:crystal structure of potential antitumor agent[Pt(trans-1R, 2R-diaminocyclohexane) trans (acetate)2Cl2][J]. Bioorg. Med. Chem., 2000,8:515-521. doi: 10.1016/S0968-0896(99)00313-2

    23. [23]

      Nayab S., Lee H., Jeong J.H.. Synthesis and structural characterization of a dichloro zinc complex of N, N'-bis-(2, 6-dichloro-benzyl)-(R, R)-1, 2-diaminocyclohexane:application to ring opening polymerization of raclactide[J]. Polyhedron, 2012,31:682-687. doi: 10.1016/j.poly.2011.10.035

    24. [24]

      Sun Y.Y., Xu G., Cao Z., Gou S.H.. Synthesis and biological evaluation of platinum (Ⅱ) complexes containing (1R, 2R)-N1-alkyl-1, 2-diaminocyclohexane and D-(+)-camphorate ligands[J]. Inorg. Chim. Acta, 2013,395:154-159. doi: 10.1016/j.ica.2012.10.011

    25. [25]

      Fang J., Wei X., Sapp J.B., Deng Y.J.. Novel platinum (Ⅱ) complexes containing diaminocyclohexane and thiourea derivative ligands:synthesisand X-ray crystal structure of (trans-1, 2-diaminocyclohexane) dithioureaplatinum (Ⅱ) nitrate monohydrate[J]. Inorg. Chim. Acta, 2014,411:5-10. doi: 10.1016/j.ica.2013.11.012

    26. [26]

      Mkaouar I., Hamdi B., Karâa N., Zouari R.. Synthesis, solid-state characterization and dielectric properties of a trichlorostanate (Ⅱ) complex[J]. Polyhedron, 2015,87:424-432. doi: 10.1016/j.poly.2014.10.035

    27. [27]

      Valkonen A., Ahonen K., Kolehmainen E.. Bis (6-thioxo-1, 6-dihydropurinium) tetrachlorozincate (Ⅱ)[J]. Acta Cryst. C, 2006,62:m290-m292. doi: 10.1107/S0108270106019469

    28. [28]

      Craven B.M., Gartland G.L.. The 2:1 crystal complex of 55-diethylbarbituric acid (barbital) and caffeine[J]. Acta Cryst., 1974,30:1191-1195. doi: 10.1107/S0567740874004559

    29. [29]

      Spackman M.A., McKinnon J.J.. Fingerprinting intermolecular interactions in molecular crystals[J]. CrystEngComm, 2002,4:378-392. doi: 10.1039/B203191B

    30. [30]

      Spackman M.A., Byrom P.G.. A novel definition of a molecule in a crystal[J]. Chem. Phys. Lett., 1997,267:215-220. doi: 10.1016/S0009-2614(97)00100-0

    31. [31]

      McKinnon J.J., Spackman M.A., Mitchell A.S.. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals[J]. Acta Cryst., 2004,60:627-668. doi: 10.1107/S0108768104020300

    32. [32]

      McKinnon J.J., Jayatilaka D., Spackman M.A.. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces[J]. Chem. Commun., 2007:3814-3816.  

    33. [33]

      Sivaraman J., Subramanian K., Velmurugan D., Subramanian E., Balakrishna K.. Structure of vicogenin[J]. Acta Cryst., 1993,C49:1240-1242.

    34. [34]

      Spackman M.A., Jayatilaka D.. Hirshfeld surface analysis[J]. CrystEngComm, 2009,11:19-32. doi: 10.1039/B818330A

    35. [35]

      Massiot D., Fayon F., Capron M.. Modelling one-and two-dimensional solid-state NMR spectra[J]. Magn. Reson. Chem., 2002,40:70-76. doi: 10.1002/mrc.984

    36. [36]

      Ericson L.E., Sarneski J.E., Reilley C.N.. Carbon-13 nuclear magnetic resonance studies of platinum (Ⅱ) complexes. I. Five-membered rings formed by substituted 1, 2-diaminoethanes[J]. Inorg. Chem., 1975,14:307-3017.  

    37. [37]

      Karâa N., Hamdi B., Ben Salah A., Zouari R.. Synthesis Infra-red, CP/MAS-NMR characterization, structural study and electrical properties of thebis (4-amino-2-chloropyridinium) tetrachlorozincate (Ⅱ) monohydrate[J]. J. Mol. Struct., 2013,1049:48-58. doi: 10.1016/j.molstruc.2013.06.003

    38. [38]

      Samet A., Boughzala H., Khemakhem H., Abid Y.. Synthesis, characterization and non-linear optical properties of Tetrakis (dimethylammonium) Bromide Hexabromobismuthate:{[(CH3)2NH2]+}4·Br-·[BiBr6]3-[J]. J. Mol. Struct., 2010,984:23-29. doi: 10.1016/j.molstruc.2010.08.049

    39. [39]

      Mahalakshmi G., Balachandran V.. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine:DFT study[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014,131:587-598. doi: 10.1016/j.saa.2014.04.154

    40. [40]

      Sajan D., Binoy J., Pradeep B.. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochim. Acta A, 2004,60:173-180. doi: 10.1016/S1386-1425(03)00193-8

    41. [41]

      Shankar Rao Y.B., Prasad M.V.S., Udaya Sri N., Veeraiah V.. Vibrational (FT-IR, FT-Raman) and UV-visible spectroscopic studies, HOMO-LUMO, NBO, NLO and MEP analysis of Benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculations[J]. J. Mol. Struct., 2016,1108:567-582. doi: 10.1016/j.molstruc.2015.12.008

    42. [42]

      Schütt H.J.. A new phenomenological description of the electrical relaxation in ionic conductors[J]. Solid State Ionics, 1994,72:86-88. doi: 10.1016/0167-2738(94)90129-5

    43. [43]

      Hodge I.M., Angell C.A.. Electrical relaxation in amorphous protonic conductors[J]. J. Chem. Phys., 1977,671647. doi: 10.1063/1.434997

    44. [44]

      Alvarez F., Alegíia A., Colmenero J.. Interconnection between frequencydomain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions[J]. Phys. Rev. B, 1993,47:125-130. doi: 10.1103/PhysRevB.47.125

    45. [45]

      Yu Z., Ang C.. Maxwell-Wagner polarization in ceramic composites BaTiO3-(Ni0.3Zn0.7) Fe2.1O4[J]. J. Appl. Phys., 2002,91794. doi: 10.1063/1.1421033

    46. [46]

      Shinde S.S., Bhosale C.H., Rajpure K.Y.. Studies on morphological and electrical properties of Al incorporated combusted iron oxide[J]. J. Alloys Compounds, 2011,509:3943-3951. doi: 10.1016/j.jallcom.2010.12.185

    47. [47]

      Hutchins G., Abu-Alkhair O., El-Nahass M.M., Abdel-Hady K.. Electrical conductivity and dielectric relaxation in non-crystalline films of tungstentrioxide[J]. J. Non-Cryst. Solids, 2007,353:4137-4142. doi: 10.1016/j.jnoncrysol.2007.06.042

    48. [48]

      Prasad K., ly Li, Kumari K., Yadav K.L.. Hopping type of conduction in (Na0.5Bi0.5) ZrO3 ceramic[J]. J. Phys. Chem. Solids, 2007,68:1508-1514. doi: 10.1016/j.jpcs.2007.03.023

    49. [49]

      Tarasiewicz J., Jakubas R., Zaleski J., Baran J.. Structural characterization, thermal, dielectric and spectroscopic properties of di (n-pentylammonium) pentabromoantimonate (Ⅲ):[J]. J. Mol. Struct., 2008,876:86-101. doi: 10.1016/j.molstruc.2007.06.005

    50. [50]

      Bhan A., Joshi Y.V., Delgass W.N., Thomson K.T.. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B, 2003,107:10476-10487. doi: 10.1021/jp034382h

    51. [51]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., PopleGaussian 03, Revision C.02, Gaussian Inc., Wallingford CT, 2004.

    52. [52]

      Hay P.J., Wadt W.R.. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J. Chem. Phys., 1985,82299. doi: 10.1063/1.448975

    53. [53]

      Becke A.D.. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys., 1993,985648. doi: 10.1063/1.464913

    54. [54]

      R. Dennington, T. Keith, J. Millam, Gauss View Version 5, Semichem Inc., Shawnee Mission, KS, 2009.

    55. [55]

      Farrugia L.J.. WinGXsuite for small-molecule single-crystal crystallography[J]. J. Appl. Cryst., 1999,32:837-838. doi: 10.1107/S0021889899006020

    56. [56]

      G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.

    57. [57]

      G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

    58. [58]

      Farrugia L.J.. ORTEP-3 for windows-aversionof ORTEP-Ⅲ with a GraphicalUser Interface (GUI)[J]. J. Appl. Cryst., 1997,30565.  

    59. [59]

      K. Brandenburg, Diamond Version 2.0, ImpactGbR, Bonn, Germany, 1998.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    6. [6]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    10. [10]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    19. [19]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

Metrics
  • PDF Downloads(1)
  • Abstract views(638)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return