Citation: Dai Hong-Liang, Geng Yan-Fang, Zeng Qing-Dao, Wang Chen. Photo-regulation of 2D supramolecular self-assembly: On-surface photochemistry studied by STM[J]. Chinese Chemical Letters, ;2017, 28(4): 729-737. doi: 10.1016/j.cclet.2016.09.018 shu

Photo-regulation of 2D supramolecular self-assembly: On-surface photochemistry studied by STM

  • Corresponding author: Zeng Qing-Dao, zengqd@nanoctr.cn Wang Chen, wangch@nanoctr.cn
  • Received Date: 25 July 2016
    Revised Date: 22 August 2016
    Accepted Date: 29 August 2016
    Available Online: 5 April 2016

Figures(15)

  • During the past few years, regulation and controlling of the two-dimension(2D)self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology. External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches, photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review, the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry, which plays an important role on the nano-devices fabrication.Notably, these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM)technique.
  • 加载中
    1. [1]

      Wang D., Chen Q., Wan L.J.. Structural transition of molecular assembly under photo-irradiation:an STM study[J]. Phys.Chem.Chem.Phys., 2008,10:6467-6478. doi: 10.1039/b810304f

    2. [2]

      Henzl J., Bredow T.. Morgenstern K.Irreversible isomerization of the azobenzene derivate methyl orange on Au(111)[J]. Chem.Phys.Lett., 2007,435:278-282. doi: 10.1016/j.cplett.2006.12.096

    3. [3]

      Martin M., Lastapis M., Riedel D.. Mastering the molecular dynamics of a bistable molecule by single atom manipulation[J]. Phys.Rev.Lett., 2006,97216103. doi: 10.1103/PhysRevLett.97.216103

    4. [4]

      Henzl J., Mehlhorn M., Gawronski H., Rieder K.H., Morgenstern K.. Reversible cis-trans isomerization of a single azobenzene molecule[J]. Angew.Chem.Int.Ed., 2006,45:603-606. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Spillmann H., Kiebele A., Stöhr M.. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes[J]. Adv.Mater., 2006,18:275-279. doi: 10.1002/(ISSN)1521-4095

    6. [6]

      Griessl S., Lackinger M., Edelwirth M., Hietschold M., Heckl W.M.. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid[J]. Single Mol., 2002,3:25-31. doi: 10.1002/(ISSN)1438-5171

    7. [7]

      Theobald J.A., Oxtoby N.S., Phillips M.A., Champness N.R., Beton P.H.. Controlling molecular deposition and layer structure with supramolecular surface assemblies[J]. Nature, 2003,424:1029-1031. doi: 10.1038/nature01915

    8. [8]

      Stepanow S., Lin N., Payer D.. Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry[J]. Angew.Chem., 2007,119:724-727. doi: 10.1002/(ISSN)1521-3757

    9. [9]

      Lingenfelder M.A., Spillmann H., Dmitriev A.. Towards surface-supported supramolecular architectures:tailored coordination assembly of 1, 4-benzenedicarboxylate and Fe on Cu(10 0)[J]. Chem.Eur.J., 2004,10:1913-1919. doi: 10.1002/(ISSN)1521-3765

    10. [10]

      Lei S.B., Tahara K., Feng X.L.. Molecular clusters in two-dimensional surface-confined nanoporous molecular networks:structure, rigidity, and dynamics[J]. J.Am.Chem.Soc., 2008,130:7119-7129. doi: 10.1021/ja800801e

    11. [11]

      Qiu X.H., Wang C., Zeng Q.D.. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins[J]. J.Am.Chem.Soc., 2000,122:5550-5556. doi: 10.1021/ja994271p

    12. [12]

      Ulman A.. Formation and structure of self-assembled monolayers[J]. Chem.Rev., 1996,96:1533-1554. doi: 10.1021/cr9502357

    13. [13]

      Li Y.B., Liu C.H., Xie Y.Z.. Temperature-controlled self-assembling structure with selective guest-recognition at the liquid-solid interface[J]. Phys. Chem.Chem.Phys., 2013,15:125-128. doi: 10.1039/C2CP43244G

    14. [14]

      Hu F.Y., Gong Y.N., Zhang X.M.. Temperature-induced transitions of self-assembled phthalocyanine molecular nanoarrays at the solid-liquid interface: from randomness to order[J]. Nanoscale, 2014,6:4243-4249. doi: 10.1039/c3nr06320h

    15. [15]

      Okawa Y., Aono M.. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions[J]. J.Chem.Phys., 2001,115:2317-2322. doi: 10.1063/1.1384554

    16. [16]

      Li Y.B., Wan J.H., Deng K.. Transformation of self-assembled structure by the addition of active reactant[J]. J.Phys.Chem.C, 2011,115:6540-6544. doi: 10.1021/jp1097876

    17. [17]

      Mandal S.K., Okawa Y., Hasegawa T., Aono M.. Rate-determining factors in the chain polymerization of molecules initiated by local single-molecule excitation[J]. ACS Nano, 2011,5:2779-2786. doi: 10.1021/nn103231j

    18. [18]

      Katsonis N., Lubomska M., Pollard M.M., Feringa B.L., Rudolf P.. Synthetic light-activated molecular switches and motors on surfaces[J]. Prog.Surf.Sci., 2007,82:407-434. doi: 10.1016/j.progsurf.2007.03.011

    19. [19]

      Binnig G., Rohrer H., Gerber C., Weibel E.. Surface studies by scanning tunneling microscopy[J]. Phys.Rev.Lett., 1982,49:57-61. doi: 10.1103/PhysRevLett.49.57

    20. [20]

      Magonov S.N., Whangbo M.H.. Interpreting STM and AFM images[J]. Adv.Mater., 1994,6:355-371. doi: 10.1002/(ISSN)1521-4095

    21. [21]

      De Feyter S., Gesquière A., Abdel-Mottaleb M.M.. Scanning tunneling microscopy:a unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers[J]. Acc.Chem.Res., 2000,33:520-531. doi: 10.1021/ar970040g

    22. [22]

      De Feyter S., De Schryver F.C.. Self-assembly at the liquid/solid interface:STM reveals[J]. J.Phys.Chem.B, 2005,109:4290-4302. doi: 10.1021/jp045298k

    23. [23]

      Zhang X.M., Zeng Q.D., Wang C.. Molecular templates and nano-reactors:two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces[J]. RSC Adv., 2013,3:11351-11366. doi: 10.1039/c3ra40473k

    24. [24]

      Lu J., Lei S.B., Zeng Q.D.. Template-induced inclusion structures with copper(Ⅱ)phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks[J]. J.Phys.Chem.B, 2004,108:5161-5165.  

    25. [25]

      Shen Y.T., Guan L., Zhang X.M.. Site-selective effects on guest-molecular adsorption and fabrication of four-component architecture by higher order networks[J]. Phys.Chem.Chem.Phys., 2013,15:12475-12479. doi: 10.1039/c3cp50371b

    26. [26]

      Shen Y.T., Deng K., Zeng Q.D., Wang C.. Size-selective effects on fullerene adsorption by nanoporous molecular networks[J]. Small, 2010,6:76-80. doi: 10.1002/smll.v6:1

    27. [27]

      Shen Y.T., Deng K., Zhang X.M.. Selective and competitive adsorptions of guest molecules in phase-separated networks[J]. J.Phys.Chem.C, 2011,115:19696-19701. doi: 10.1021/jp202890y

    28. [28]

      Li M., Deng K., Lei S.B.. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface[J]. Angew.Chem.Int.Ed., 2008,47:6717-6721. doi: 10.1002/anie.v47:35

    29. [29]

      Li Y.B., Ma Z., Qi G.C.. Solvent effects on supramolecular networks formed by racemic star-shaped oligofluorene studied by scanning tunneling microscopy[J]. J.Phys.Chem.C, 2008,112:8649-8653.  

    30. [30]

      Wang Y.B., Niu L., Li Y.B.. Single molecule studies of cyclic peptides using molecular matrix at liquid/solid interface by scanning tunneling microscopy[J]. Langmuir, 2010,26:16305-16311. doi: 10.1021/la101467s

    31. [31]

      Shen Y.T., Zeng L.J., Lei D.. Competitive adsorption and dynamics of guest molecules in 2D molecular sieves[J]. J.Mater.Chem., 2011,21:8787-8791. doi: 10.1039/c1jm10260e

    32. [32]

      Barrett C.J., Mamiya J.I., Yager K.G., Ikeda T.. Photo-mechanical effects in azobenzene-containing soft materials[J]. Soft Matter, 2007,3:1249-1261. doi: 10.1039/b705619b

    33. [33]

      Yesodha S.K., Sadashiva Pillai C.K.. Tsutsumi N.Stable polymeric materials for nonlinear optics:a review based on azobenzene systems[J]. Prog.Polym.Sci., 2004,29:45-74. doi: 10.1016/j.progpolymsci.2003.07.002

    34. [34]

      Yager K.G., Barrett C.J.. Novel photo-switching using azobenzene functional materials[J]. J.Photochem.Photobiol.A, 2006,182:250-261. doi: 10.1016/j.jphotochem.2006.04.021

    35. [35]

      Oosaki S., Hayasaki H., Sakurai Y., Yajima S., Kimura K.. Photocontrol of ion-sensor performances in neutral-carrier-type ion sensors based on liquid-crystalline membranes[J]. Chem.Commun., 2005,522:6-522 7.  

    36. [36]

      Dietrich P., Michalik F., Schmidt R.. An anchoring strategy for photoswitchable biosensor technology:azobenzene-modified SAMs on Si (111)[J]. Appl.Phys.A, 2008,93:285-292. doi: 10.1007/s00339-008-4828-0

    37. [37]

      Pijper D., Jongejan M.G.M., Meetsma A., Feringa B.L.. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch[J]. J.Am.Chem.Soc., 2008,130:4541-4552. doi: 10.1021/ja711283c

    38. [38]

      Westmark P.R., Kelly J.P., Smith B.D.. Photoregulation of enzyme activity. Photochromic, transition-state-analog inhibitors of cysteine and serine proteases[J]. J.Am.Chem.Soc., 1993,115:3416-3419. doi: 10.1021/ja00062a003

    39. [39]

      Gorostiza P., Isacoff E.Y.. Optical switches for remote and noninvasive control of cell signaling[J]. Science, 2008,322:395-399. doi: 10.1126/science.1166022

    40. [40]

      Bazarnik M., Jurczyszyn L., Czajka R., Morgenstern K.. Mechanism of a molecular photo-switch adsorbed on Si(10 0)[J]. Phys.Chem.Chem.Phys., 2015,17:5366-5371. doi: 10.1039/C4CP04353G

    41. [41]

      Alemani M., Selvanathan S., Ample F.. Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces:Au (111), Cu(111), and Au(1 0 0)[J]. J.Phys.Chem.C, 2008,112:10509-10514.  

    42. [42]

      Mielke J., Selvanathan S., Peters M.. Molecules with multiple switching units on a Au(111) surface:self-organization and single-molecule manipulation[J]. J.Phys.:Condens.Matter, 2012,24394013. doi: 10.1088/0953-8984/24/39/394013

    43. [43]

      Shen Y.T., Guan L., Zhu X.Y., Zeng Q.D., Wang C.. Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network[J]. J.Am.Chem.Soc., 2009,131:6174-6180. doi: 10.1021/ja808434n

    44. [44]

      Shen Y.T., Deng K., Zhang X.M.. Switchable ternary nanoporous supramolecular network on photo-regulation[J]. Nano Lett., 2011,11:3245-3250. doi: 10.1021/nl201504x

    45. [45]

      Zhang X.M., Wang S., Shen Y.T.. Two-dimensional networks of an azobenzene derivative:bi-pyridine mediation and photo regulation[J]. Nanoscale, 2012,4:5039-5042. doi: 10.1039/c2nr31186k

    46. [46]

      Kumar A.S., Ye T., Takami T.. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments[J]. Nano Lett., 2008,8:1644-1648. doi: 10.1021/nl080323+

    47. [47]

      Tsai C.S., Wang J.K., Skodje R.T., Lin J.C.. A single molecule view of bistilbene photoisomerization on a surface using scanning tunneling microscopy[J]. J.Am. Chem.Soc., 2005,127:10788-10789. doi: 10.1021/ja052448b

    48. [48]

      Shimizu H., Cojal González J.D., Hasegawa M.. Synthesis, structures, and photophysical properties of '-expanded oligothiophene 8-mers and their saturn-like C60 complexes[J]. J.Am.Chem.Soc., 2015,137:3877-3885. doi: 10.1021/jacs.5b00291

    49. [49]

      Schmidt G.M.J.. Photodimerization in the solid state[J]. Pure Appl.Chem., 1971,27:647-678.  

    50. [50]

      Xue J.D., Xu J., Hu F.Y.. Highly efficient photodimerization of olefins in a nanotemplate on HOPG by scanning tunneling microscopy[J]. Phys.Chem.Chem. Phys., 2014,16:25765-25769. doi: 10.1039/C4CP04154B

    51. [51]

      Liao L.Y., Li Y.B., Zhang X.M.. STM investigation of the photoisomerization and photodimerization of stilbene derivatives on HOPG surface[J]. J.Phys.Chem. C, 2014,118:15963-15969. doi: 10.1021/jp505511e

    52. [52]

      Xu L.P., Yan C.J., Wan L.J., Jiang S.G., Liu M.H.. Light-induced structural transformation in self-assembled monolayer of 4-(amyloxy)cinnamic acid investigated with scanning tunneling microscopy[J]. J.Phys.Chem.B, 2005,109:14773-14778. doi: 10.1021/jp052959k

    53. [53]

      Tour J.M., Molecular electronics.. Synthesis and testing of components[J]. Acc. Chem.Res., 2000,33:791-804. doi: 10.1021/ar0000612

    54. [54]

      Okawa Y., Mandal S.K., Hu C.P.. Chemical wiring and soldering toward all-molecule electronic circuitry[J]. J.Am.Chem.Soc., 2011,133:8227-8233. doi: 10.1021/ja111673x

    55. [55]

      Qiao Y.H., Zeng Q.D., Tan Z.Y.. Photoinduced organic nanowires from self-assembled monolayers[J]. J.Vac.Sci.Technol.B, 2002,20:2466-2469. doi: 10.1116/1.1526601

    56. [56]

      Deshpande A., Sham C.H., Alaboson J.M.P.. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene[J]. J.Am.Chem.Soc., 2012,134:16759-16764. doi: 10.1021/ja307061e

    57. [57]

      Zhang X.M., Xu S.D., Li M.. Photo-induced polymerization and isomerization on the surface observed by scanning tunneling microscopy[J]. J. Phys.Chem.C, 2012,116:8950-8955. doi: 10.1021/jp2115884

    58. [58]

      Xu W., Zhang C., Gersen H.. A molecular conformational change induced self-assembly:from randomness to order[J]. Chem.Commun., 2013,49:5207-5209. doi: 10.1039/c3cc40743h

    59. [59]

      Darwish N., Aragones A.C., Darwish T., Ciampi S., Díez-Pérez I.. Multi-responsive photo-and chemo-electrical single-molecule switches[J]. Nano Lett., 2014,14:7064-7070. doi: 10.1021/nl5034599

    60. [60]

      Katsonis N., Kudernac T., Walko M.. Reversible conductance switching of single diarylethenes on a gold surface[J]. Adv.Mater., 2006,18:1397-1400. doi: 10.1002/(ISSN)1521-4095

    61. [61]

      Frath D., Sakano T., Imaizumi Y.. Diarylethene self-assembled monolayers:cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface[J]. Chem.Eur.J., 2015,21:11350-11358. doi: 10.1002/chem.201500804

    62. [62]

      Oreshkin I., Panov V.I., Vasil'ev S.I., Koroteev N.I., Magnitskii S.A.. Direct STM observation of electronic structure modification of naphthacenequinone molecules due to photoisomerization[J]. J.Exp.Theor.Phys.Lett., 1998,68:521-526. doi: 10.1134/1.567900

  • 加载中
    1. [1]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    2. [2]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    6. [6]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    7. [7]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    8. [8]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    9. [9]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    14. [14]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    15. [15]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    16. [16]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    20. [20]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

Metrics
  • PDF Downloads(2)
  • Abstract views(551)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return