Citation: Jiang You, Yin Yi-Jie, Zha Xin-Cheng, Dou Xiao-Qiu, Feng Chuan-Liang. Wettability regulated gram-negative bacterial adhesion on biomimetic hierarchical structures[J]. Chinese Chemical Letters, ;2017, 28(4): 813-817. doi: 10.1016/j.cclet.2016.08.002 shu

Wettability regulated gram-negative bacterial adhesion on biomimetic hierarchical structures

  • Corresponding author: Feng Chuan-Liang, clfeng@sjtu.edu.cn
  • 1 Equal contribution
  • Received Date: 1 June 2016
    Revised Date: 21 July 2016
    Accepted Date: 22 August 2016
    Available Online: 7 April 2017

Figures(5)

  • One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic, and what is the relevant/contributing role of the lipopolysaccharide(LPS)outer layer of the gram-negative shell during this procedure.Herein, by avoiding the unexpected influence induced by the varied topographies, control over gram-negative bacteria adhesion by wettability is achieved on biomimetic hierarchical surfaces, which is mainly mediated by LPS layer.The study provides a methodology to have a good control over bacteria cell adhesion by properly designing wettable surface structures.This design concept is helpful for developing new generations of biomaterials in order to control a variety of diseases induced by gram-negative bacteria, which still continue to be very important and necessary in the fields of biomedicine.
  • 加载中
    1. [1]

      Galloway W.R.J.D., Hodgkinson J.T., Bowden S.D., Welch M., Spring D.R. Quorum sensing in gram-negative bacteria:small-molecule modulation of AHL and AI-2 quorum sensing pathways[J]. Chem.Rev., 2011,111:28-67. doi: 10.1021/cr100109t

    2. [2]

      Liu K.S., Yao X., Jiang L. Recent developments in bio-inspired special wettability[J]. Chem.Soc.Rev., 2010,39:3240-3255. doi: 10.1039/b917112f

    3. [3]

      Saadeddin A., A.Rodrigo-Navarro , Monedro V.. Functional living biointer-phases[J]. Adv.Healthc.Mater., 2013,2:1213-1218. doi: 10.1002/adhm.v2.9

    4. [4]

      A. Okada, T. Nikaido, M. Ikeda, et al. , Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties, Dent. Mater. J. 27 (2008)565-572.

    5. [5]

      Arima Y., Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled mono-layers[J]. Biomaterials, 2007,28:3074-3082. doi: 10.1016/j.biomaterials.2007.03.013

    6. [6]

      Gon S., Kumar K.N., K.Nüsslein , Santore M.M. How bacteria adhere to brushy PEG surfaces:clinging to flaws and compressing the brush[J]. Macromolecules, 2012,45:8373-8381. doi: 10.1021/ma300981r

    7. [7]

      Pernites R.B., Santos C.M., Maldonado M.. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films[J]. Chem.Mater., 2012,24:870-880. doi: 10.1021/cm2007044

    8. [8]

      Nie Y.N., Kalapos C., Nie X.Y.. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface[J]. Ann.Clin.Microbiol.Antimicrob., 2010,925. doi: 10.1186/1476-0711-9-25

    9. [9]

      Hori K., Matsumoto S. Bacterial adhesion:from mechanism to control[J]. Biochem. Eng.J., 2010,48:424-434. doi: 10.1016/j.bej.2009.11.014

    10. [10]

      Stallard C.P., McDonnell K.A., Onayemi O.D., J.P.O'Gara , Dowling D.P. Evaluation of protein adsorption on atmospheric cues plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties[J]. Biointerphases, 2012,7:1-12. doi: 10.1007/s13758-011-0001-y

    11. [11]

      Craighead H.G., James C.D., Turner A.M.P. Chemical and topographical patterning for directed cell attachment[J]. Curr.Opin.Solid State Mater.Sci., 2001,5:177-184. doi: 10.1016/S1359-0286(01)00005-5

    12. [12]

      Wiencek K.M., Fletcher M. Effects of substratum wettability and molecular topography on the initial adhesion of bacteria to chemically defined substrata[J]. Biofouling, 1997,11:293-311. doi: 10.1080/08927019709378338

    13. [13]

      Ramalingama M., Tiwari A. Spatially controlled cell growth using patterned biomaterials[J]. Adv.Mater.Lett., 2010,1:179-187. doi: 10.5185/amlett

    14. [14]

      Baranes K., Chejanovsky N., Alon N., Sharoni A., Shefi O. Topographic cues of nano-scale height direct neuronal growth pattern[J]. Biotechnol.Bioeng., 2012,109:1791-1797. doi: 10.1002/bit.v109.7

    15. [15]

      X. G. Liang, S. J. Wi, Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6 (2012)9700-9710.

    16. [16]

      Waugh D.G., Toccaceli C., Gillett A.R.. Surface treatments to modulate bioadhesion:a critical review[J]. Rev.Adhes.Adhes., 2016,4:69-103. doi: 10.7569/RAA.2016.097304

    17. [17]

      Yang J., Wan Y.Q., Tu C.F.. Enhancing the cell affinity of macroporous poly (L-lactide)cell scaffold by a convenient surface modification method[J]. Polym.Int., 2003,52:1892-1899. doi: 10.1002/(ISSN)1097-0126

    18. [18]

      Goetz L.A., Jalvo B., Rosal R., Mathew A.P. Superhydrophilic anti-fouling electro-spun cellulose acetate membranes coated with chitin nanocrystals for water filtration[J]. J.Membr.Sci., 2016,510:238-248. doi: 10.1016/j.memsci.2016.02.069

    19. [19]

      Epstein A.K., Hochbaum A.I., Kim P., Aizenberg J. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry[J]. Nanotechnology, 2011,22494007. doi: 10.1088/0957-4484/22/49/494007

    20. [20]

      Arnold, Schwieder, J.Blümmel. Cell interactions with hierarchically structured nano-patterned adhesive surfaces[J]. Soft Matter, 2009,5:72-77. doi: 10.1039/B815634D

    21. [21]

      F. X. Zhang, H. Z. Li, X. Wang, H. Y. Low, X. Li, Hierarchically imprinted polymer substrates for enhanced attachment of Escherichia coli, J. Colloid Interface Sci. 343 (2010)109-114.

    22. [22]

      Feng L., Zhang Y.N., Xi J.M.. Petal effect:a superhydrophobic state with high adhesive force[J]. Langmuir, 2008,24:4114-4119. doi: 10.1021/la703821h

    23. [23]

      Liu G.F., Zhang D., Feng C.L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels[J]. Angew.Chem.Int.Ed., 2014,53:7789-7793. doi: 10.1002/anie.201403249

    24. [24]

      Hartgerink J.D., Beniash E., Stupp S.I. Self-assembly and mineralization of pep-tide-amphiphile nanofibers[J]. Science, 2001,294:1684-1688. doi: 10.1126/science.1063187

    25. [25]

      Wenzel R.N. Resistance of solid surfaces to wetting by water[J]. Ind.Eng.Chem., 1936,28:988-994. doi: 10.1021/ie50320a024

    26. [26]

      Cassie A.B.D., Baxter S. Wettability of porous surfaces[J]. Trans.Faraday Soc., 1944,40:546-551. doi: 10.1039/tf9444000546

    27. [27]

      Liu K.S., Jiang L. Bio-inspired design of multiscale structures for function inte-gration[J]. Nanotoday, 2011,6:155-175. doi: 10.1016/j.nantod.2011.02.002

    28. [28]

      Pernites R.B., Ponnapati R.R., Advincula R.C. Superhydrophobic-superoleophilic polythiophene films with tunable wetting and electrochromism[J]. Adv.Mater., 2011,23:3207-3213. doi: 10.1002/adma.v23.28

    29. [29]

      P. G. de Gennes, F. Brochard-Wyart, D. Que're', Capillarity and Wetting Phenomena -Drops, Bubbles, Pearls, Waves, 129, Springer, New York, 2004.

    30. [30]

      Han Z.J., Tay B., Tan C., Shakerzadeh M., Ostrikov K. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nano-composites[J]. ACS Nano, 2009,3:3031-3036. doi: 10.1021/nn900846p

    31. [31]

      Balazs D.J., Triandafillu K., Chevolot Y.. Surface modification of PVC endo-tracheal tubes by oxygen glow discharge to reduce bacterial adhesion[J]. Surf. Interface Anal., 2003,35:301-309. doi: 10.1002/(ISSN)1096-9918

    32. [32]

      Lagergren S. Kungliga svenska vetenskapsakademiens[J]. Handlingar, 1898,24:1-39.

    33. [33]

      Williams V., Fletcher M. Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition[J]. Appl.Environ. Microbiol., 1996,62:100-104.  

    34. [34]

      Shiu J.Y., Chen P.L. Addressable protein patterning via switchable superhydro-phobic microarrays[J]. Adv.Funct.Mater., 2007,17:2680-2686. doi: 10.1002/(ISSN)1616-3028

    35. [35]

      Roach P., Farrar D., Perry C.C. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry[J]. J.Am.Chem.Soc., 2006,128:3939-3945. doi: 10.1021/ja056278e

  • 加载中
    1. [1]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    9. [9]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    10. [10]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    11. [11]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    14. [14]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    15. [15]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    18. [18]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(2)
  • Abstract views(608)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return