Citation: Cui Li-Ying, Yan Yu, Zhao Xin-Yu, Yu Cun-Long, Ma Ying, Yang Bai. Controlling coffee ring structure on hydrophobic polymer surface by manipulating wettability with O2 plasma[J]. Chinese Chemical Letters, ;2017, 28(1): 1-5. doi: 10.1016/j.cclet.2016.07.028 shu

Controlling coffee ring structure on hydrophobic polymer surface by manipulating wettability with O2 plasma

  • Corresponding author: Yang Bai, byangchem@jlu.edu.cn
  • Received Date: 12 June 2016
    Revised Date: 4 July 2016
    Accepted Date: 6 July 2016
    Available Online: 29 January 2016

Figures(4)

  • A simple and novel method is firstly reported for controlling coffee ring structure on polystyrene (PS) film surface by O2 plasma. O2 plasma treatment leads to the wettability change of PS surface from hydrophobic to hydrophilic. For hydrophilic PS surface the coffee ring structure is avoided relying on the motion of contact line (CL) while SiO2 microspheres are left. The motion of the CL is produced based on the viscosity and Marangoni effect with the addition of polymer additives. For hydrophobic PS surface coffee ring structure still persists even with polymer additives because SiO2 microspheres transfer with the motion of the CL at the beginning of droplet evaporation and accumulate at the droplet edge at late stage with the pinning of the CL. As a result, uniform and macroscale SiO2 microspheres deposition without coffee ring structure and SiO2 microspheres deposition with coffee ring structure are controlled by O2 plasma. This method provides a new way to tune coffee ring structure with smart surface and may be potentially useful for a range of application at material deposition and diagnosing diseases.
  • 加载中
    1. [1]

      Anyfantakis M., Baigl D.. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness[J]. Angew. Chem. Int. Ed., 2014,53:14077-14081. doi: 10.1002/anie.v53.51

    2. [2]

      Xie Z.Y., Li L.L., Liu P.M.. Self-assembled coffee-ring colloidal crystals for structurally colored contact lenses[J]. Small, 2015,11:926-930. doi: 10.1002/smll.v11.8

    3. [3]

      Wen J.T., Ho C.M., Lillehoj P.B.. Coffee ring aptasensor for rapid protein detection[J]. Langmuir, 2013,29:8440-8446. doi: 10.1021/la400224a

    4. [4]

      Cui L.Y., Li Y.F., Wang J.X.. Fabrication of large-area patterned photonic crystals by ink-jet printing[J]. J. Mater. Chem., 2009,19:5499-5502.  

    5. [5]

      Deegan R.D., Bakajin O., Dupont T.F.. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997,389:827-829. doi: 10.1038/39827

    6. [6]

      Wu J.T., Hsu S.L.C., Tsai M.H., Hwang W.S.. Inkjet printing of low-temperature cured silver patterns by using AgNO3/1-dimethylamino-2-propanol inks on polymer substrates[J]. J. Phys. Chem. C, 2011,115:10940-10945. doi: 10.1021/jp200972y

    7. [7]

      Girard F., Antoni M., Faure S., Steinchen A.. Influence of heating temperature and relative humidity in the evaporation of pinned droplets[J]. Colloids Surf. A:Physicochem. Eng. Aspects, 2008,323:36-49. doi: 10.1016/j.colsurfa.2007.12.022

    8. [8]

      Park J., Moon J., Shin H., Wang D.K., Park M.. Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing[J]. J. Colloid Interface Sci., 2006,298:713-719. doi: 10.1016/j.jcis.2006.01.031

    9. [9]

      Yunker P.J., Still T., Lohr M.A., Yodh A.G.. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011,476:308-311. doi: 10.1038/nature10344

    10. [10]

      Eral H.B., Augustine D.M., Duits M.H.G., Mugele F.. Suppressing the coffee stain effect:how to control colloidal self-assembly in evaporating drops using electrowetting[J]. Soft Matter, 2011,7:4954-4958. doi: 10.1039/c1sm05183k

    11. [11]

      Cui L.Y., Zhang J.H., Zhang X.M.. Suppression of the coffee ring effect by hydrosoluble polymer additives[J]. ACS Appl. Mater. Interfaces, 2012,4:2775-2780. doi: 10.1021/am300423p

    12. [12]

      Wang J.X., Zhang Y.Z., Wang S.T., Song Y.L., Jiang L.. Bioinspired colloidal photonic crystals with controllable wettability[J]. Acc. Chem. Res., 2011,44:405-415. doi: 10.1021/ar1001236

    13. [13]

      Xu L.Y., Tong F.Q., Lu X.M., Lu K., Lu Q.H.. Multifunctional polypyrene/silica hybrid coatings with stable excimer fluorescence and robust superhydrophobicity derived from electrodeposited polypyrene films[J]. J. Mater. Chem. C, 2015,3:2086-2092. doi: 10.1039/C4TC02653E

    14. [14]

      Song W.L.. Adhesion switch on a gecko-foot inspired smart nanocupule surface[J]. Nanoscale, 2014,6:13435-13439. doi: 10.1039/C4NR04090B

    15. [15]

      Su B., Guo W., Jiang L.. Learning from nature:binary cooperative complementary nanomaterials[J]. Small, 2015,11:1072-1096. doi: 10.1002/smll.v11.9-10

    16. [16]

      Stöber W., Fink A., Bohn E.. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968,26:62-69. doi: 10.1016/0021-9797(68)90272-5

    17. [17]

      He D.G., He X.X., Wang K.M., Zhao Y.X.. A facile route for shape-selective synthesis of silica nanostructures using poly-L-lysine as template[J]. Chin. Chem. Lett., 2013,24:99-102. doi: 10.1016/j.cclet.2013.01.038

    18. [18]

      Wang X., Yang Y.J., Ma Y., Yao J.N.. Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route[J]. Chin. Chem. Lett., 2013,24:1-6. doi: 10.1016/j.cclet.2013.01.017

    19. [19]

      Sangani A.S., Lu C., Su K., Schwarz J.A.. Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning[J]. Phys. Rev. E, 2009,80011603.  

    20. [20]

      Kajiya T., Monteux C., Narita T., Lequeux F., Doi M.. Contact-line recession leaving a macroscopic polymer film in the drying droplets of water-poly (N, N-dimethylacrylamide) (PDMA) solution[J]. Langmuir, 2009,25:6934-6939. doi: 10.1021/la900216k

    21. [21]

      Kajiya T., Kobayashi W., Okuzono T., Doi M.. Controlling profiles of polymer dots by switching between evaporation and condensation[J]. Langmuir, 2010,26:10429-10432. doi: 10.1021/la1016388

  • 加载中
    1. [1]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    11. [11]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    12. [12]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    17. [17]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(2)
  • Abstract views(908)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return