Citation: Liu Ling-Yang, Zhang Xu, Li Hong-Xia, Liu Bao, Lang Jun-Wei, Kong Ling-Bin, Yan Xing-Bin. Synthesis of Co-Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life[J]. Chinese Chemical Letters, ;2017, 28(2): 206-212. doi: 10.1016/j.cclet.2016.07.027 shu

Synthesis of Co-Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life

  • Corresponding author: Kong Ling-Bin, konglb@lut.cn Yan Xing-Bin, xbyan@licp.cas.cn
  • Received Date: 30 May 2016
    Revised Date: 26 June 2016
    Accepted Date: 4 July 2016
    Available Online: 29 February 2016

Figures(4)

  • Li-ion hybrid capacitors (LIHCs), composing of a lithium-ion battery (LIB) type anode and a supercapacitor (SC) type cathode, gained worldwide popularity due to harmonious integrating the virtues of high energy density of LIBs with high power density of SCs. Herein, nanoflakes composed microflower-like Co-Ni oxide (CoNiO) was successfully synthesized by a simple co-precipitation method. The atomic ratio of as-synthesized CoNiO is determined to be 1:3 through XRD and XPS analytical method. As a typical battery-type material, CoNiO and capacitor-type activated polyanilinederived carbon (APDC) were used to assemble LIHCs as the anode and cathode materials, respectively. As a result, when an optimized mass ratio of CoNiO and APDC was 1:2, CoNiO//APDC LIHC could deliver a maximum energy density of 143 Wh kg-1 at a working voltage of 1-4 V. It is worth mentioning that the LIHC also exhibits excellent cycle stability with the capacitance retention of 78.2% after 15,000 cycles at a current density of 0.5 A g-1.
  • 加载中
    1. [1]

      Y.Q. Chen, X.N. Zhang, Z.P. Xie. Flexible nitrogen doped SiC nanoarray for ultrafast capacitive energy storage[J]. ACS Nano, 2015,9:8054-8063. doi: 10.1021/acsnano.5b01784

    2. [2]

      L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chin. Chem. Lett., 2014,25:957-961. doi: 10.1016/j.cclet.2014.05.032

    3. [3]

      J.J. Cai, L.B. Kong, J. Zhang, Y.C. Lou, L. Kang, A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chin. Chem. Lett. 21(2010) 1509-1512.

    4. [4]

      M.H. Yu, Y. Zeng, Y. Han. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100,000 cycles[J]. Adv. Funct. Mater., 2015,25:3534-3540. doi: 10.1002/adfm.v25.23

    5. [5]

      M.J. Shi, S.Z. Kou, B.S. Shen. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge[J]. Chin. Chem. Lett., 2014,25:859-864. doi: 10.1016/j.cclet.2014.04.010

    6. [6]

      G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41(2012) 797-828.

    7. [7]

      H.W. Wang, Z.A. Hu, Y.Q. Chang. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors[J]. J. Mater. Chem., 2011,21:10504-10511. doi: 10.1039/c1jm10758e

    8. [8]

      D. Chen, Q.F. Wang, R.M. Wang, G.Z. Shen. Ternary oxide nanostructured materials for supercapacitors:a review[J]. J. Mater. Chem. A, 2015,3:10158-10173. doi: 10.1039/C4TA06923D

    9. [9]

      M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang. MnO2-based nanostructures for high-performance supercapacitors[J]. J. Mater. Chem. A, 2015,3:21380-21423. doi: 10.1039/C5TA05523G

    10. [10]

      Y.F. An, Z.G. Hu, B.S. Guo. Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density[J]. RSC Adv., 2016,6:37562-37573. doi: 10.1039/C6RA04788B

    11. [11]

      K.L. Van Aken, M. Beidaghi, Y. Gogotsi. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors[J]. Angew. Chem. Int. Ed., 2015,54:4806-4809. doi: 10.1002/anie.201412257

    12. [12]

      D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero. Hybrid energy storage:the merging of battery and supercapacitor chemistries[J]. Chem. Soc. Rev., 2015,44:1777-1790. doi: 10.1039/C4CS00266K

    13. [13]

      W. Zhang, Y.H. Qu, L.J. Gao. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate[J]. Chin. Chem. Lett., 2012,23:623-626. doi: 10.1016/j.cclet.2012.03.013

    14. [14]

      Z.A. Zhang, M.G. Deng, B.H. Wang, Y.D. Hu, B.C. Yang. Electrochemical hybrid capacitor[J]. Batt. Bim., 2004,34:295-297.

    15. [15]

      L. Zhou, H. Zhang, W.J. Qie. Progress in electrochemical hybrid capacitors[J]. Chin. J. Power Sources, 2013,37:2073-2076.

    16. [16]

      R.T. Wang, J.W. Lang, P. Zhang, Z.Y. Lin, X.B. Yan. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward highperformance hybrid supercapacitors[J]. Adv. Funct. Mater., 2015,25:2270-2278. doi: 10.1002/adfm.201404472

    17. [17]

      J. Zhang, X.F. Liu, J. Wang, J. Shi, Z.Q. Shi. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochim. Acta, 2016,187:134-142. doi: 10.1016/j.electacta.2015.11.055

    18. [18]

      L. Deng, W.H. Yang, S.X. Zhou, J.T. Chen. Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell[J]. Chin. Chem. Lett., 2015,26:1529-1534. doi: 10.1016/j.cclet.2015.06.009

    19. [19]

      L. Ye, Q.H. Liang, Y. Lei, et al., A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform, J. Power Sources 282(2015) 174-178.

    20. [20]

      C.F. Liu, C.K. Zhang, H.Q. Song. Mesocrystal MnO cubes as anode for Li-ion capacitors[J]. Nano Energy, 2016,22:290-300. doi: 10.1016/j.nanoen.2016.02.035

    21. [21]

      Y. Xu, Y.J. Li, S.Q. Liu, H.L. Li, Y.N. Liu. Nanoparticle Li2FeSiO4 as anode material for lithium-ion batteries[J]. J. Power Sources, 2012,220:103-107. doi: 10.1016/j.jpowsour.2012.07.130

    22. [22]

      D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes, J. Mater. Chem. 19(2009) 82-88.

    23. [23]

      Y.F. Ma, H.C. Chang, M. Zhang, Y.S. Chen. Graphene-based materials for lithiumion hybrid supercapacitors[J]. Adv. Mater., 2015,27:5296-5308. doi: 10.1002/adma.201501622

    24. [24]

      L.W. Zhao, H.J. Li, M.J. Li. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres[J]. Appl. Energy, 2016,162:197-206. doi: 10.1016/j.apenergy.2015.10.093

    25. [25]

      Y.G. Lim, M.S. Park, K.J. Kim. Incorporation of conductive polymer into soft carbon electrodes for lithium ion capacitors[J]. J. Power Sources, 2015,299:49-56. doi: 10.1016/j.jpowsour.2015.08.083

    26. [26]

      R.Z. Li, Y.M. Wang, C. Zhou. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability[J]. Adv. Funct. Mater., 2015,25:5384-5394. doi: 10.1002/adfm.201502265

    27. [27]

      V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chem. Rev., 2014,114:11619-11635. doi: 10.1021/cr5000915

    28. [28]

      Z.A. Hu, Y.L. Xie, Y.X. Wang. Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors[J]. Electrochim. Acta, 2009,54:2737-2741. doi: 10.1016/j.electacta.2008.11.035

    29. [29]

      Y.M. Chen, Z. Li, X.W. Lou. General formation of MxCo3-xS4(M=Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors[J]. Angew. Chem. Int. Ed., 2015,54:10521-10524. doi: 10.1002/anie.201504349

    30. [30]

      W.D. Yu, W. Lin, X.F. Shao. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose[J]. J. Power Sources, 2014,272:137-143. doi: 10.1016/j.jpowsour.2014.08.064

    31. [31]

      Z.M. Zheng, P. Zhang, X.B. Yan. Progress in electrode materials for lithium ion hybrid supercapacitors[J]. Chin. Sci. Bull., 2013,31:3115-3123. doi: 10.1360/972013-760

    32. [32]

      J.W. Lang, L.B. Kong, M. Liu, Y.C. Luo, L. Kang, Co0.56Ni0.44 oxide nanoflake materials and activated carbon for asymmetric supercapacitor, J. Electrochem. Soc. 157(2010) A1341-A1346.

    33. [33]

      J.Y. Cheng, B. Zhao, W.K. Zhang. High-performance supercapacitor applications of NiO-nanoparticle-decorated millimeter-long vertically aligned carbon nanotube arrays via an effective supercritical CO2-assisted method[J]. Adv. Funct. Mater., 2015,25:7381-7391. doi: 10.1002/adfm.v25.47

    34. [34]

      S.X. Wu, K.S. Hui, K.N. Hui, K.H. Kim. Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors[J]. J. Mater. Chem. A, 2016,4:9113-9123. doi: 10.1039/C6TA02005D

    35. [35]

      Y. Bai, M.M. Liu, J. Sun, L. Gao. Fabrication of Ni-Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors[J]. Ionics, 2016,22:535-544. doi: 10.1007/s11581-015-1576-y

    36. [36]

      Q. Li, Q. Wei, L.J. Xie. Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode[J]. RSC Adv., 2016,6:46548-46557. doi: 10.1039/C6RA04998B

    37. [37]

      F. Yang, J.Y. Yao, F.L. Liu. Ni-Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors[J]. J. Mater. Chem. A, 2013,1:594-601. doi: 10.1039/C2TA00055E

    38. [38]

      C.R. Zheng, C.B. Cao, Z. Ali, J.H. Hou, Enhanced electrochemical performance of ball milledCoOforsupercapacitorapplications,J.Mater.Chem.A2(2014)16467-16473.

    39. [39]

      M.Y. Yang, F.C. Lv, Z.Y. Wang. Binder-free hydrogenated NiO-CoO hybrid electrodes for high performance supercapacitors[J]. RSC Adv., 2015,5:31725-31731. doi: 10.1039/C5RA02268A

    40. [40]

      W.B. Xu, B. Mu, A.Q. Wang. Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor[J]. Electrochim. Acta, 2016,194:84-94. doi: 10.1016/j.electacta.2016.02.072

    41. [41]

      S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology[J]. ACS Appl. Mater. Interfaces, 2013,5:1596-1603. doi: 10.1021/am3021894

    42. [42]

      D.N. Lan, Y.Y. Chen, P. Chen. Mesoporous CoO nanocubes@continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor[J]. ACS Appl. Mater. Interfaces, 2014,6:11839-11845. doi: 10.1021/am503378n

    43. [43]

      B. Li, F. Dai, Q.F. Xiao. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy Environ. Sci., 2016,9:102-106. doi: 10.1039/C5EE03149D

    44. [44]

      P. Sennu, H.J. Choi, S.G. Baek, V. Aravindan, Y.S. Lee. Tube-like carbon for Li-ion capacitors derived from the environmentally undesirable plant:Prosopis juliflora[J]. Carbon, 2016,98:58-66. doi: 10.1016/j.carbon.2015.10.087

    45. [45]

      R.T. Wang, X.B. Yan. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods[J]. Sci. Rep., 2014,43712.

    46. [46]

      J. Li, Y.H. Wang, J. Tang. Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors[J]. J. Mater. Chem. A, 2015,3:2876-2882. doi: 10.1039/C4TA05668J

    47. [47]

      R. Ding, L. Qi, H.Y. Wang. Porous NiCo2O4 as an anode material for 4.5 V hybrid Liion capacitors[J]. RSC Adv., 2013,3:12581-12584. doi: 10.1039/c3ra41260a

  • 加载中
    1. [1]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    2. [2]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    3. [3]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    4. [4]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    5. [5]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    6. [6]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    9. [9]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    10. [10]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    13. [13]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    14. [14]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    15. [15]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    16. [16]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    17. [17]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    18. [18]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    19. [19]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    20. [20]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

Metrics
  • PDF Downloads(2)
  • Abstract views(622)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return