Theoretical predication for transition energies of thermally activated delayed fluorescence molecules
- Corresponding author: Qisheng Zhang, qishengzhang@zju.edu.cn Chihaya Adachi, adachi@cstf.kyushu-u.ac.jp
Citation:
Xiaohui Tian, Haitao Sun, Qisheng Zhang, Chihaya Adachi. Theoretical predication for transition energies of thermally activated delayed fluorescence molecules[J]. Chinese Chemical Letters,
;2016, 27(8): 1445-1452.
doi:
10.1016/j.cclet.2016.07.017
S. Boudin. Phosphorescence of glycerol solutions of eosin, influence of iodides[J]. J. Chim. Phys., 1930,27:285-290.
G.N. Lewis, D. Lipkin, T.T. Magel. Reversible photochemical processes in rigid media. A study of the phosphorescent State[J]. J. Am. Chem. Soc., 1941,63:3005-3018. doi: 10.1021/ja01856a043
C. Parker, C. Hatchard. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin[J]. Trans. Faraday Soc., 1961,57:1894-1904. doi: 10.1039/tf9615701894
J. Saltiel, H.C. Curtis, L. Metts. Delayed fluroescence and phosphorescence of aromatic ketones in solution[J]. J. Am. Chem. Soc., 1970,92:410-411. doi: 10.1021/ja00705a617
A. Endo, K. Sato, K. Yoshimura. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes[J]. Appl. Phys. Lett., 2011,98083302. doi: 10.1063/1.3558906
K. Goushi, K. Yoshida, K. Sato. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nat. Photon., 2012,6:253-258. doi: 10.1038/nphoton.2012.31
T. Nakagawa, S.Y. Ku, K.T. Wong. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure[J]. Chem. Commun., 2012,48:9580-9582. doi: 10.1039/c2cc31468a
Q. Zhang, J. Li, K. Shizu. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes[J]. J. Am. Chem. Soc., 2012,134:14706-14709. doi: 10.1021/ja306538w
S.Y. Lee, T. Yasuda, H. Nomura. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules[J]. Appl. Phys. Lett., 2012,101093306. doi: 10.1063/1.4749285
G. Méhes, H. Nomura, Q. Zhang. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence[J]. Angew Chem. Int. Ed. Engl., 2012,51:11311-11315. doi: 10.1002/anie.201206289
H. Tanaka, K. Shizu, H. Miyazaki. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative[J]. Chem. Commun., 2012,48:11392-11394. doi: 10.1039/c2cc36237f
H. Uoyama, K. Goushi, K. Shizu. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492:234-238. doi: 10.1038/nature11687
K. Sato, K. Shizu, K. Yoshimura. Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes[J]. Phys. Rev. Lett., 2013,110247401. doi: 10.1103/PhysRevLett.110.247401
J. Li, T. Nakagawa, J. MacDonald. Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative[J]. Adv. Mater., 2013,25:3319-3323. doi: 10.1002/adma.v25.24
Q. Zhang, B. Li, S. Huang. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence[J]. Nat. Photon., 2014,8:326-332. doi: 10.1038/nphoton.2014.12
Q. Zhang, H. Kuwabara, W.J. Potscavage Jr.. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highlyefficientred electroluminescence[J]. J. Am. Chem. Soc., 2014,136:18070-18081. doi: 10.1021/ja510144h
S. Hirata, Y. Sakai, K. Masui. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence[J]. Nat. Mater., 2015,14:330-336.
Y. Tao, K. Yuan, T. Chen. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J]. Adv. Mater., 2014,26:7931-7958. doi: 10.1002/adma.v26.47
F.B. Dias, K.N. Bourdakos, V. Jankus. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters[J]. Adv. Mater., 2013,25:3707-3714. doi: 10.1002/adma.v25.27
H. Wang, L. Xie, Q. Peng. Novel Thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs[J]. Adv. Mater., 2014,26:5198-5204. doi: 10.1002/adma.201401393
X.-K. Liu, Z. Chen, C.-J. Zheng. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes[J]. Adv. Mater., 2015,27:2378-2383. doi: 10.1002/adma.v27.14
M. Kim, S.K. Jeon, S.-H. Hwang. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J]. Adv. Mater., 2015,27:2515-2520. doi: 10.1002/adma.201500267
L. Mei, J. Hu, X. Cao. The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs[J]. Chem. Commun., 2015,51:13024-13027. doi: 10.1039/C5CC04126K
T. Hatakeyama, K. Shiren, K. Nakajima. Ultrapure blue thermally activated delayed fluorescence molecules: Efficient HOMO-LUMO separation by the multiple resonance effect[J]. Adv. Mater., 2016,28:2777-2781. doi: 10.1002/adma.v28.14
P. Rajamalli, N. Senthilkumar, P. Gandeepan. A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission[J]. J. Mater. Chem. C, 2016,4:900-904. doi: 10.1039/C5TC03943F
S. Feuillastre, M. Pauton, L. Gao. Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters[J]. J. Am. Chem. Soc., 2016,138:3990-3993. doi: 10.1021/jacs.6b00850
D. Zhang, M. Cai, Y. Zhang. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability[J]. Mater. Horizons, 2016,3:145-151. doi: 10.1039/C5MH00258C
G. Xie, X. Li, D. Chen. Evaporation- and solution-process-feasible highly efficient thianthrene-9,90,10,100-tetraoxide-based thermally activated delayed fluorescence emitters with reduced efficiency roll-off[J]. Adv. Mater., 2016,28:181-187. doi: 10.1002/adma.201503225
M.E. Casida, Response Theory for Molecules, Recent Advances in Density Functional Methods: (Part I), vol. 1, 1995, p. 155.
E. Gross, J. Dobson, M. Petersilka, Density functional theory of time-dependent phenomena, in: Density Functional Theory II, Springer, 1996, pp. 81-172.
A. Dreuw, M. Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chem. Rev., 2005,105:4009-4037. doi: 10.1021/cr0505627
L. Serrano-Andrés, J.J. Serrano-Pérez, Calculation of excited states: molecular photophysics and photochemistry on display, in: Handbook of Computational Chemistry, Springer, 2012, pp. 483-560.
D. Jacquemin, A. Planchat, C. Adamo. TD-DFT assessment of functionals for optical 0-0 transitions in solvated dyes[J]. J. Chem. Theory Comput., 2012,8:2359-2372. doi: 10.1021/ct300326f
C. Adamo, D. Jacquemin. The calculations of excited-state properties with timedependent density functional theory[J]. Chem. Soc. Rev., 2013,42:845-856. doi: 10.1039/C2CS35394F
S. Grimme, Calculation of the electronic spectra of large molecules, in: Reviews in Computational Chemistry, John Wiley & Sons, Inc., 2004, pp. 153-218.
A. Dreuw, M. Head-Gordon. Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes[J]. J. Am. Chem. Soc., 2004,126:4007-4016. doi: 10.1021/ja039556n
S. Huang, Q. Zhang, Y. Shiota. Computational prediction for singlet- and triplet-transition energies of charge-transfer compounds[J]. J. Chem. Theory Comput., 2013,9:3872-3877. doi: 10.1021/ct400415r
S. Hirata, M. Head-Gordon. Time-dependent density functional theory within the Tamm-Dancoff approximation[J]. Chem. Phys. Lett., 1999,314:291-299. doi: 10.1016/S0009-2614(99)01149-5
M.J.G. Peach, M.J. Williamson, D.J. Tozer. Influence of triplet instabilities in TDDFT[J]. J. Chem. Theory Comput., 2011,7:3578-3585. doi: 10.1021/ct200651r
M. Moral, L. Muccioli, W.J. Son. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: Impact of charge-transfer character[J]. J. Chem. Theory Comput., 2015,11:168-177. doi: 10.1021/ct500957s
B. Milián-Medina, J. Gierschner. Computational design of low singlet-triplet gap all-organic molecules for OLED application[J]. Org. Electron., 2012,13:985-991. doi: 10.1016/j.orgel.2012.02.010
G. Scalmani, M.J. Frisch. Continuous surface charge polarizable continuum models of solvation. I. General formalism[J]. J. Chem. Phys., 2010,132114110. doi: 10.1063/1.3359469
V. Barone, M. Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J. Phys. Chem. A, 1998,102:1995-2001. doi: 10.1021/jp9716997
M., N., G., etal.. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J. Comput. Chem., 2003,24:669-681. doi: 10.1002/jcc.10189
R. Improta, V. Barone, G. Scalmani. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution[J]. J. Chem. Phys., 2006,125054103. doi: 10.1063/1.2222364
R.Improta, G.Scalmani, M.J.Frisch, etal.. Toward effective andreliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach[J]. J. Chem. Phys., 2007,127074504. doi: 10.1063/1.2757168
A. Klamt. The COSMO and COSMO-RS solvation models[J]. WIRES Comput. Mol. Sci., 2011,1:699-709. doi: 10.1002/wcms.56
J. Tomasi, R. Bonaccorsi. Methodological aspects of the solvation models based on continuous solvent distributions[J]. Croat. Chem. Acta, 1992,65:29-54.
A.V. Marenich, C.J. Cramer, D.G. Truhlar. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J. Phys. Chem. B, 2009,113:6378-6396. doi: 10.1021/jp810292n
A. Nicholls, D.L. Mobley, J.P. Guthrie. Predicting small-molecule solvation free energies: an informal blind test for computational chemistry[J]. J. Med. Chem., 2008,51:769-779. doi: 10.1021/jm070549+
J. Lu, Y. Zheng, J. Zhang. Tuning the color of thermally activated delayed fluorescent properties for spiro-acridine derivatives by structural modification of the acceptor fragment: a DFT study[J]. RSC Adv., 2015,5:18588-18592. doi: 10.1039/C4RA15155K
M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, 1995, p. 124.
D.J. Casadonte, D.R. McMillin. Hindered internal conversion in rigid media. Thermally nonequilibrated 3IL and 3CT emissions from[Cu(5-X-phen)(PPh3)2]+ and[Cu(4,7-X2-phen)(PPh3)2]+ systems in a glass at 77 K[J]. J. Am. Chem. Soc., 1987,109:331-337. doi: 10.1021/ja00236a006
P. Klán, J. Wirz, Photochemistry of Organic Compounds: From Concepts to Practice, John Wiley & Sons, 2009, p. 43.
B. Wardle, Principles and Applications of Photochemistry, John Wiley & Sons, 2009, p. 61.
Q. Zhang, T. Komino, S. Huang. Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(I) complexes[J]. Adv. Funct. Mater., 2012,22:2327-2336. doi: 10.1002/adfm.v22.11
J. Li, Q. Zhang, H. Nomura. Thermally activated delayed fluorescence from 3nπ* to 1nπ* up-conversion and its application to organic light-emitting diodes[J]. Appl. Phys. Lett., 2014,105013301. doi: 10.1063/1.4887346
A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993,985648. doi: 10.1063/1.464913
C. Adamo, V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522
Y. Zhao, D.G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x
T. Yanai, D.P. Tew, N.C. Handy. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett., 2004,393:51-57. doi: 10.1016/j.cplett.2004.06.011
H. Iikura, T. Tsuneda, T. Yanai. A long-range correction scheme for generalized-gradient-approximation exchange functionals[J]. J. Chem. Phys., 2001,115:3540-3544. doi: 10.1063/1.1383587
O.A. Vydrov, G.E. Scuseria. Assessment of a long-range corrected hybrid functional[J]. J. Chem. Phys., 2006,125234109. doi: 10.1063/1.2409292
J.-D. Chai, M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys. Chem. Chem. Phys., 2008,10:6615-6620. doi: 10.1039/b810189b
S.Y. Lee, T. Yasuda, Y.S. Yang. Luminous butterflies: Efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs[J]. Angew Chem. Int. Ed. Engl., 2014,53:6402-6406. doi: 10.1002/anie.201402992
K. Kawasumi, T. Wu, T. Zhu. Thermally activated delayed fluorescence materials based on homoconjugation effect of donor-acceptor triptycenes[J]. J. Am. Chem. Soc., 2015,137:11908-11911. doi: 10.1021/jacs.5b07932
Y. Sagara, K. Shizu, H. Tanaka. Highly efficient thermally activated delayed fluorescence emitters with small singlet-triplet energy gap and large oscillator strength[J]. Chem. Lett., 2015,44:360-362. doi: 10.1246/cl.141054
S. Wang, X. Yan, Z. Cheng. Highly Efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound[J]. Angew Chem. Int. Ed. Engl., 2015,54:13068-13072. doi: 10.1002/anie.v54.44
P. Rajamalli, N. Senthilkumar, P. Gandeepan. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes[J]. J. Am. Chem. Soc., 2015,138:628-634.
X. Zhang, W. Shen, D. Zhang. Theoretical investigation of dihydroacridine and diphenylsulphone derivatives as thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. RSC Adv., 2015,5:51586-51591. doi: 10.1039/C5RA04929F
K. Shizu, H. Noda, H. Tanaka. Highly efficient blue electroluminescence using delayed-fluorescence emitters with large overlap density between luminescent and ground states[J]. J. Phys. Chem. C, 2015,119:26283-26289. doi: 10.1021/acs.jpcc.5b07798
K. Shizu, M. Uejima, H. Nomura. Enhanced electroluminescence from a thermally activated delayed-fluorescence emitter by suppressing nonradiative decay[J]. Phy. Rev. Appl., 2015,3014001. doi: 10.1103/PhysRevApplied.3.014001
J. Lee, K. Shizu, H. Tanaka. Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. J. Mater. Chem. C, 2013,1:4599-4604.
J. Lee, K. Shizu, H. Tanaka. Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters[J]. J. Mater. Chem. C, 2015,3:2175-2181. doi: 10.1039/C4TC02530J
A. Karton, A. Tarnopolsky, J.-F. Lamère. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics[J]. J. Phys. Chem. A, 2008,112:12868-12886. doi: 10.1021/jp801805p
L. Goerigk, S. Grimme. Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions[J]. J. Chem. Theory Comput., 2011,7:291-309. doi: 10.1021/ct100466k
A.D. Becke. Perspective: fifty years of density-functional theory in chemical physics[J]. J. Chem. Phys., 2014,14018A.
H. Sun, C. Zhong, J.-L. Brédas. Reliable prediction with tuned range-separated functionals of the singlet-triplet gap in organic emitters for thermally activated delayed fluorescence[J]. J. Chem. Theory Comput., 2015,11:3851-3858. doi: 10.1021/acs.jctc.5b00431
M.J.G. Peach, P. Benfield, T. Helgaker. Excitation energies in density functional theory: an evaluation and a diagnostic test[J]. J. Chem. Phys., 2008,128044118. doi: 10.1063/1.2831900
T. Le Bahers, C. Adamo, I. Ciofini. A qualitative index of spatial extent in chargetransfer excitations[J]. J. Chem. Theory Comput., 2011,7:2498-2506. doi: 10.1021/ct200308m
C.A. Guido, P. Cortona, B. Mennucci. On the metric of charge transfer molecular excitations: a simple chemical descriptor[J]. J. Chem. Theory Comput., 2013,9:3118-3126. doi: 10.1021/ct400337e
T. Etienne, X. Assfeld, A. Monari. Toward a quantitative assessment of electronic transitions' charge-transfer character[J]. J. Chem. Theory Comput., 2014,10:3896-3905. doi: 10.1021/ct5003994
C.A. Guido, P. Cortona, C. Adamo. Effective electron displacements: a tool for timedependent density functional theory computational spectroscopy[J]. J. Chem. Phys., 2014,140104101. doi: 10.1063/1.4867007
T. Etienne. Transition matrices and orbitals from reduced density matrix theory[J]. J. Chem. Phys., 2015,142244103. doi: 10.1063/1.4922780
T.J. Penfold. On predicting the excited-state properties of thermally activated delayed fluorescence emitters[J]. J. Phys. Chem. C, 2015,119:13535-13544. doi: 10.1021/acs.jpcc.5b03530
T. Chen, L. Zheng, J. Yuan. Understanding the control of singlet-triplet splitting for organic exciton manipulating: a combined theoretical and experimental approach[J]. Sci. Rep., 2015,510923. doi: 10.1038/srep10923
R. Baer, E. Livshits, U. Salzner. Tuned range-separated hybrids in density functional theory[J]. Annu. Rev. Phys. Chem., 2010,61:85-109. doi: 10.1146/annurev.physchem.012809.103321
T. Stein, H. Eisenberg, L. Kronik. Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method[J]. Phys. Rev. Lett., 2010,105266802. doi: 10.1103/PhysRevLett.105.266802
J. Autschbach, M. Srebro. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties[J]. Acc. Chem. Res., 2014,47:2592-2602. doi: 10.1021/ar500171t
L. Kronik, T. Stein, S. Refaely-Abramson. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals[J]. J. Chem. Theory Comput., 2012,8:1515-1531. doi: 10.1021/ct2009363
H. Sun, J. Autschbach. Electronic energy gaps for p-conjugated oligomers and polymers calculated with density functional theory[J]. J. Chem. Theory Comput., 2014,10:1035-1047. doi: 10.1021/ct4009975
H. Sun, Z. Hu, C. Zhong. Quantitative estimation of exciton binding energy of polythiophene-derived polymers using polarizable continuum model tuned range-separated density functional[J]. J. Phys. Chem. C, 2016,120:8048-8055. doi: 10.1021/acs.jpcc.6b01975
H. Sun, S. Zhang, Z. Sun. Applicability of optimal functional tuning in density functional calculations of ionization potentials and electron affinities of adeninethymine nucleobase pairs and clusters[J]. Phys. Chem. Chem. Phys., 2015,17:4337-4345. doi: 10.1039/C4CP05470A
H. Sun, S. Zhang, C. Zhong. Theoretical study of excited states of DNA base dimers and tetramers using optimally tuned range-separated density functional theory[J]. J. Comput. Chem., 2016,37:684-693. doi: 10.1002/jcc.v37.7
M.A. Rohrdanz, J.M. Herbert. Simultaneous benchmarking of ground- and excitedstate properties with long-range-corrected density functional theory[J]. J. Chem. Phys., 2008,129034107. doi: 10.1063/1.2954017
P. Mori-Sánchez, A.J. Cohen, W. Yang. Localization and delocalization errors in density functional theory and implications for band-gap prediction[J]. Phys. Rev. Lett., 2008,100146401. doi: 10.1103/PhysRevLett.100.146401
Jun-Yi Wang , Jue-Yu Bao , Zheng-Guang Wu , Zheng-Yin Du , Xunwen Xiao , Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634