Citation: Xiaohui Tian, Haitao Sun, Qisheng Zhang, Chihaya Adachi. Theoretical predication for transition energies of thermally activated delayed fluorescence molecules[J]. Chinese Chemical Letters, ;2016, 27(8): 1445-1452. doi: 10.1016/j.cclet.2016.07.017 shu

Theoretical predication for transition energies of thermally activated delayed fluorescence molecules

Figures(8)

  • Thermally activated delayed fluorescence (TADF) emitters are primarily comprised of intramolecular charge-transfer (ICT) molecules with small energy difference between the lowest singlet and triplet excited states. They lend extremely favorable electroluminescent performance to organic light-emitting diodes (OLEDs). This paper summarizes relevant issues and research efforts in the theoretical prediction of singlet- and triplet-transition energies of ICT molecules via time-dependent density functional theory (TDDFT). The successful application of the descriptor-based optimal Hartree-Fock percentage method and the optimally tuned range-separated functional to many TADF systems represent an interesting approach to the exact prediction of the complex excited-state molecular dynamics within TDDFT.
  • 加载中
    1. [1]

      S. Boudin. Phosphorescence of glycerol solutions of eosin, influence of iodides[J]. J. Chim. Phys., 1930,27:285-290.

    2. [2]

      G.N. Lewis, D. Lipkin, T.T. Magel. Reversible photochemical processes in rigid media. A study of the phosphorescent State[J]. J. Am. Chem. Soc., 1941,63:3005-3018. doi: 10.1021/ja01856a043

    3. [3]

      C. Parker, C. Hatchard. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin[J]. Trans. Faraday Soc., 1961,57:1894-1904. doi: 10.1039/tf9615701894

    4. [4]

      J. Saltiel, H.C. Curtis, L. Metts. Delayed fluroescence and phosphorescence of aromatic ketones in solution[J]. J. Am. Chem. Soc., 1970,92:410-411. doi: 10.1021/ja00705a617

    5. [5]

      A. Endo, K. Sato, K. Yoshimura. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes[J]. Appl. Phys. Lett., 2011,98083302. doi: 10.1063/1.3558906

    6. [6]

      K. Goushi, K. Yoshida, K. Sato. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nat. Photon., 2012,6:253-258. doi: 10.1038/nphoton.2012.31

    7. [7]

      T. Nakagawa, S.Y. Ku, K.T. Wong. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure[J]. Chem. Commun., 2012,48:9580-9582. doi: 10.1039/c2cc31468a

    8. [8]

      Q. Zhang, J. Li, K. Shizu. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes[J]. J. Am. Chem. Soc., 2012,134:14706-14709. doi: 10.1021/ja306538w

    9. [9]

      S.Y. Lee, T. Yasuda, H. Nomura. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules[J]. Appl. Phys. Lett., 2012,101093306. doi: 10.1063/1.4749285

    10. [10]

      G. Méhes, H. Nomura, Q. Zhang. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence[J]. Angew Chem. Int. Ed. Engl., 2012,51:11311-11315. doi: 10.1002/anie.201206289

    11. [11]

      H. Tanaka, K. Shizu, H. Miyazaki. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative[J]. Chem. Commun., 2012,48:11392-11394. doi: 10.1039/c2cc36237f

    12. [12]

      H. Uoyama, K. Goushi, K. Shizu. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492:234-238. doi: 10.1038/nature11687

    13. [13]

      K. Sato, K. Shizu, K. Yoshimura. Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes[J]. Phys. Rev. Lett., 2013,110247401. doi: 10.1103/PhysRevLett.110.247401

    14. [14]

      J. Li, T. Nakagawa, J. MacDonald. Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative[J]. Adv. Mater., 2013,25:3319-3323. doi: 10.1002/adma.v25.24

    15. [15]

      Q. Zhang, B. Li, S. Huang. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence[J]. Nat. Photon., 2014,8:326-332. doi: 10.1038/nphoton.2014.12

    16. [16]

      Q. Zhang, H. Kuwabara, W.J. Potscavage Jr.. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highlyefficientred electroluminescence[J]. J. Am. Chem. Soc., 2014,136:18070-18081. doi: 10.1021/ja510144h

    17. [17]

      S. Hirata, Y. Sakai, K. Masui. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence[J]. Nat. Mater., 2015,14:330-336.  

    18. [18]

      Y. Tao, K. Yuan, T. Chen. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J]. Adv. Mater., 2014,26:7931-7958. doi: 10.1002/adma.v26.47

    19. [19]

      F.B. Dias, K.N. Bourdakos, V. Jankus. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters[J]. Adv. Mater., 2013,25:3707-3714. doi: 10.1002/adma.v25.27

    20. [20]

      H. Wang, L. Xie, Q. Peng. Novel Thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs[J]. Adv. Mater., 2014,26:5198-5204. doi: 10.1002/adma.201401393

    21. [21]

      X.-K. Liu, Z. Chen, C.-J. Zheng. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes[J]. Adv. Mater., 2015,27:2378-2383. doi: 10.1002/adma.v27.14

    22. [22]

      M. Kim, S.K. Jeon, S.-H. Hwang. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J]. Adv. Mater., 2015,27:2515-2520. doi: 10.1002/adma.201500267

    23. [23]

      L. Mei, J. Hu, X. Cao. The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs[J]. Chem. Commun., 2015,51:13024-13027. doi: 10.1039/C5CC04126K

    24. [24]

      T. Hatakeyama, K. Shiren, K. Nakajima. Ultrapure blue thermally activated delayed fluorescence molecules: Efficient HOMO-LUMO separation by the multiple resonance effect[J]. Adv. Mater., 2016,28:2777-2781. doi: 10.1002/adma.v28.14

    25. [25]

      P. Rajamalli, N. Senthilkumar, P. Gandeepan. A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission[J]. J. Mater. Chem. C, 2016,4:900-904. doi: 10.1039/C5TC03943F

    26. [26]

      S. Feuillastre, M. Pauton, L. Gao. Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters[J]. J. Am. Chem. Soc., 2016,138:3990-3993. doi: 10.1021/jacs.6b00850

    27. [27]

      D. Zhang, M. Cai, Y. Zhang. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability[J]. Mater. Horizons, 2016,3:145-151. doi: 10.1039/C5MH00258C

    28. [28]

      G. Xie, X. Li, D. Chen. Evaporation- and solution-process-feasible highly efficient thianthrene-9,90,10,100-tetraoxide-based thermally activated delayed fluorescence emitters with reduced efficiency roll-off[J]. Adv. Mater., 2016,28:181-187. doi: 10.1002/adma.201503225

    29. [29]

      M.E. Casida, Response Theory for Molecules, Recent Advances in Density Functional Methods: (Part I), vol. 1, 1995, p. 155.

    30. [30]

      E. Gross, J. Dobson, M. Petersilka, Density functional theory of time-dependent phenomena, in: Density Functional Theory II, Springer, 1996, pp. 81-172.

    31. [31]

      A. Dreuw, M. Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chem. Rev., 2005,105:4009-4037. doi: 10.1021/cr0505627

    32. [32]

      L. Serrano-Andrés, J.J. Serrano-Pérez, Calculation of excited states: molecular photophysics and photochemistry on display, in: Handbook of Computational Chemistry, Springer, 2012, pp. 483-560.

    33. [33]

      D. Jacquemin, A. Planchat, C. Adamo. TD-DFT assessment of functionals for optical 0-0 transitions in solvated dyes[J]. J. Chem. Theory Comput., 2012,8:2359-2372. doi: 10.1021/ct300326f

    34. [34]

      C. Adamo, D. Jacquemin. The calculations of excited-state properties with timedependent density functional theory[J]. Chem. Soc. Rev., 2013,42:845-856. doi: 10.1039/C2CS35394F

    35. [35]

      S. Grimme, Calculation of the electronic spectra of large molecules, in: Reviews in Computational Chemistry, John Wiley & Sons, Inc., 2004, pp. 153-218.

    36. [36]

      A. Dreuw, M. Head-Gordon. Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes[J]. J. Am. Chem. Soc., 2004,126:4007-4016. doi: 10.1021/ja039556n

    37. [37]

      S. Huang, Q. Zhang, Y. Shiota. Computational prediction for singlet- and triplet-transition energies of charge-transfer compounds[J]. J. Chem. Theory Comput., 2013,9:3872-3877. doi: 10.1021/ct400415r

    38. [38]

      S. Hirata, M. Head-Gordon. Time-dependent density functional theory within the Tamm-Dancoff approximation[J]. Chem. Phys. Lett., 1999,314:291-299. doi: 10.1016/S0009-2614(99)01149-5

    39. [39]

      M.J.G. Peach, M.J. Williamson, D.J. Tozer. Influence of triplet instabilities in TDDFT[J]. J. Chem. Theory Comput., 2011,7:3578-3585. doi: 10.1021/ct200651r

    40. [40]

      M. Moral, L. Muccioli, W.J. Son. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: Impact of charge-transfer character[J]. J. Chem. Theory Comput., 2015,11:168-177. doi: 10.1021/ct500957s

    41. [41]

      B. Milián-Medina, J. Gierschner. Computational design of low singlet-triplet gap all-organic molecules for OLED application[J]. Org. Electron., 2012,13:985-991. doi: 10.1016/j.orgel.2012.02.010

    42. [42]

      G. Scalmani, M.J. Frisch. Continuous surface charge polarizable continuum models of solvation. I. General formalism[J]. J. Chem. Phys., 2010,132114110. doi: 10.1063/1.3359469

    43. [43]

      V. Barone, M. Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J. Phys. Chem. A, 1998,102:1995-2001. doi: 10.1021/jp9716997

    44. [44]

      M., N., G., etal.. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J. Comput. Chem., 2003,24:669-681. doi: 10.1002/jcc.10189

    45. [45]

      R. Improta, V. Barone, G. Scalmani. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution[J]. J. Chem. Phys., 2006,125054103. doi: 10.1063/1.2222364

    46. [46]

      R.Improta, G.Scalmani, M.J.Frisch, etal.. Toward effective andreliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach[J]. J. Chem. Phys., 2007,127074504. doi: 10.1063/1.2757168

    47. [47]

      A. Klamt. The COSMO and COSMO-RS solvation models[J]. WIRES Comput. Mol. Sci., 2011,1:699-709. doi: 10.1002/wcms.56

    48. [48]

      J. Tomasi, R. Bonaccorsi. Methodological aspects of the solvation models based on continuous solvent distributions[J]. Croat. Chem. Acta, 1992,65:29-54.

    49. [49]

      A.V. Marenich, C.J. Cramer, D.G. Truhlar. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J. Phys. Chem. B, 2009,113:6378-6396. doi: 10.1021/jp810292n

    50. [50]

      A. Nicholls, D.L. Mobley, J.P. Guthrie. Predicting small-molecule solvation free energies: an informal blind test for computational chemistry[J]. J. Med. Chem., 2008,51:769-779. doi: 10.1021/jm070549+

    51. [51]

      J. Lu, Y. Zheng, J. Zhang. Tuning the color of thermally activated delayed fluorescent properties for spiro-acridine derivatives by structural modification of the acceptor fragment: a DFT study[J]. RSC Adv., 2015,5:18588-18592. doi: 10.1039/C4RA15155K

    52. [52]

      M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, 1995, p. 124.

    53. [53]

      D.J. Casadonte, D.R. McMillin. Hindered internal conversion in rigid media. Thermally nonequilibrated 3IL and 3CT emissions from[Cu(5-X-phen)(PPh3)2]+ and[Cu(4,7-X2-phen)(PPh3)2]+ systems in a glass at 77 K[J]. J. Am. Chem. Soc., 1987,109:331-337. doi: 10.1021/ja00236a006

    54. [54]

      P. Klán, J. Wirz, Photochemistry of Organic Compounds: From Concepts to Practice, John Wiley & Sons, 2009, p. 43.

    55. [55]

      B. Wardle, Principles and Applications of Photochemistry, John Wiley & Sons, 2009, p. 61.

    56. [56]

      Q. Zhang, T. Komino, S. Huang. Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(I) complexes[J]. Adv. Funct. Mater., 2012,22:2327-2336. doi: 10.1002/adfm.v22.11

    57. [57]

      J. Li, Q. Zhang, H. Nomura. Thermally activated delayed fluorescence from 3nπ* to 1nπ* up-conversion and its application to organic light-emitting diodes[J]. Appl. Phys. Lett., 2014,105013301. doi: 10.1063/1.4887346

    58. [58]

      A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993,985648. doi: 10.1063/1.464913

    59. [59]

      C. Adamo, V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522

    60. [60]

      Y. Zhao, D.G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x

    61. [61]

      T. Yanai, D.P. Tew, N.C. Handy. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett., 2004,393:51-57. doi: 10.1016/j.cplett.2004.06.011

    62. [62]

      H. Iikura, T. Tsuneda, T. Yanai. A long-range correction scheme for generalized-gradient-approximation exchange functionals[J]. J. Chem. Phys., 2001,115:3540-3544. doi: 10.1063/1.1383587

    63. [63]

      O.A. Vydrov, G.E. Scuseria. Assessment of a long-range corrected hybrid functional[J]. J. Chem. Phys., 2006,125234109. doi: 10.1063/1.2409292

    64. [64]

      J.-D. Chai, M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys. Chem. Chem. Phys., 2008,10:6615-6620. doi: 10.1039/b810189b

    65. [65]

      S.Y. Lee, T. Yasuda, Y.S. Yang. Luminous butterflies: Efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs[J]. Angew Chem. Int. Ed. Engl., 2014,53:6402-6406. doi: 10.1002/anie.201402992

    66. [66]

      K. Kawasumi, T. Wu, T. Zhu. Thermally activated delayed fluorescence materials based on homoconjugation effect of donor-acceptor triptycenes[J]. J. Am. Chem. Soc., 2015,137:11908-11911. doi: 10.1021/jacs.5b07932

    67. [67]

      Y. Sagara, K. Shizu, H. Tanaka. Highly efficient thermally activated delayed fluorescence emitters with small singlet-triplet energy gap and large oscillator strength[J]. Chem. Lett., 2015,44:360-362. doi: 10.1246/cl.141054

    68. [68]

      S. Wang, X. Yan, Z. Cheng. Highly Efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound[J]. Angew Chem. Int. Ed. Engl., 2015,54:13068-13072. doi: 10.1002/anie.v54.44

    69. [69]

      P. Rajamalli, N. Senthilkumar, P. Gandeepan. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes[J]. J. Am. Chem. Soc., 2015,138:628-634.

    70. [70]

      X. Zhang, W. Shen, D. Zhang. Theoretical investigation of dihydroacridine and diphenylsulphone derivatives as thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. RSC Adv., 2015,5:51586-51591. doi: 10.1039/C5RA04929F

    71. [71]

      K. Shizu, H. Noda, H. Tanaka. Highly efficient blue electroluminescence using delayed-fluorescence emitters with large overlap density between luminescent and ground states[J]. J. Phys. Chem. C, 2015,119:26283-26289. doi: 10.1021/acs.jpcc.5b07798

    72. [72]

      K. Shizu, M. Uejima, H. Nomura. Enhanced electroluminescence from a thermally activated delayed-fluorescence emitter by suppressing nonradiative decay[J]. Phy. Rev. Appl., 2015,3014001. doi: 10.1103/PhysRevApplied.3.014001

    73. [73]

      J. Lee, K. Shizu, H. Tanaka. Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. J. Mater. Chem. C, 2013,1:4599-4604.  

    74. [74]

      J. Lee, K. Shizu, H. Tanaka. Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters[J]. J. Mater. Chem. C, 2015,3:2175-2181. doi: 10.1039/C4TC02530J

    75. [75]

      A. Karton, A. Tarnopolsky, J.-F. Lamère. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics[J]. J. Phys. Chem. A, 2008,112:12868-12886. doi: 10.1021/jp801805p

    76. [76]

      L. Goerigk, S. Grimme. Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions[J]. J. Chem. Theory Comput., 2011,7:291-309. doi: 10.1021/ct100466k

    77. [77]

      A.D. Becke. Perspective: fifty years of density-functional theory in chemical physics[J]. J. Chem. Phys., 2014,14018A.  

    78. [78]

      H. Sun, C. Zhong, J.-L. Brédas. Reliable prediction with tuned range-separated functionals of the singlet-triplet gap in organic emitters for thermally activated delayed fluorescence[J]. J. Chem. Theory Comput., 2015,11:3851-3858. doi: 10.1021/acs.jctc.5b00431

    79. [79]

      M.J.G. Peach, P. Benfield, T. Helgaker. Excitation energies in density functional theory: an evaluation and a diagnostic test[J]. J. Chem. Phys., 2008,128044118. doi: 10.1063/1.2831900

    80. [80]

      T. Le Bahers, C. Adamo, I. Ciofini. A qualitative index of spatial extent in chargetransfer excitations[J]. J. Chem. Theory Comput., 2011,7:2498-2506. doi: 10.1021/ct200308m

    81. [81]

      C.A. Guido, P. Cortona, B. Mennucci. On the metric of charge transfer molecular excitations: a simple chemical descriptor[J]. J. Chem. Theory Comput., 2013,9:3118-3126. doi: 10.1021/ct400337e

    82. [82]

      T. Etienne, X. Assfeld, A. Monari. Toward a quantitative assessment of electronic transitions' charge-transfer character[J]. J. Chem. Theory Comput., 2014,10:3896-3905. doi: 10.1021/ct5003994

    83. [83]

      C.A. Guido, P. Cortona, C. Adamo. Effective electron displacements: a tool for timedependent density functional theory computational spectroscopy[J]. J. Chem. Phys., 2014,140104101. doi: 10.1063/1.4867007

    84. [84]

      T. Etienne. Transition matrices and orbitals from reduced density matrix theory[J]. J. Chem. Phys., 2015,142244103. doi: 10.1063/1.4922780

    85. [85]

      T.J. Penfold. On predicting the excited-state properties of thermally activated delayed fluorescence emitters[J]. J. Phys. Chem. C, 2015,119:13535-13544. doi: 10.1021/acs.jpcc.5b03530

    86. [86]

      T. Chen, L. Zheng, J. Yuan. Understanding the control of singlet-triplet splitting for organic exciton manipulating: a combined theoretical and experimental approach[J]. Sci. Rep., 2015,510923. doi: 10.1038/srep10923

    87. [87]

      R. Baer, E. Livshits, U. Salzner. Tuned range-separated hybrids in density functional theory[J]. Annu. Rev. Phys. Chem., 2010,61:85-109. doi: 10.1146/annurev.physchem.012809.103321

    88. [88]

      T. Stein, H. Eisenberg, L. Kronik. Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method[J]. Phys. Rev. Lett., 2010,105266802. doi: 10.1103/PhysRevLett.105.266802

    89. [89]

      J. Autschbach, M. Srebro. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties[J]. Acc. Chem. Res., 2014,47:2592-2602. doi: 10.1021/ar500171t

    90. [90]

      L. Kronik, T. Stein, S. Refaely-Abramson. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals[J]. J. Chem. Theory Comput., 2012,8:1515-1531. doi: 10.1021/ct2009363

    91. [91]

      H. Sun, J. Autschbach. Electronic energy gaps for p-conjugated oligomers and polymers calculated with density functional theory[J]. J. Chem. Theory Comput., 2014,10:1035-1047. doi: 10.1021/ct4009975

    92. [92]

      H. Sun, Z. Hu, C. Zhong. Quantitative estimation of exciton binding energy of polythiophene-derived polymers using polarizable continuum model tuned range-separated density functional[J]. J. Phys. Chem. C, 2016,120:8048-8055. doi: 10.1021/acs.jpcc.6b01975

    93. [93]

      H. Sun, S. Zhang, Z. Sun. Applicability of optimal functional tuning in density functional calculations of ionization potentials and electron affinities of adeninethymine nucleobase pairs and clusters[J]. Phys. Chem. Chem. Phys., 2015,17:4337-4345. doi: 10.1039/C4CP05470A

    94. [94]

      H. Sun, S. Zhang, C. Zhong. Theoretical study of excited states of DNA base dimers and tetramers using optimally tuned range-separated density functional theory[J]. J. Comput. Chem., 2016,37:684-693. doi: 10.1002/jcc.v37.7

    95. [95]

      M.A. Rohrdanz, J.M. Herbert. Simultaneous benchmarking of ground- and excitedstate properties with long-range-corrected density functional theory[J]. J. Chem. Phys., 2008,129034107. doi: 10.1063/1.2954017

    96. [96]

      P. Mori-Sánchez, A.J. Cohen, W. Yang. Localization and delocalization errors in density functional theory and implications for band-gap prediction[J]. Phys. Rev. Lett., 2008,100146401. doi: 10.1103/PhysRevLett.100.146401

  • 加载中
    1. [1]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    2. [2]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    3. [3]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    4. [4]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    5. [5]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    6. [6]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    7. [7]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    10. [10]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    11. [11]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    12. [12]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    13. [13]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    14. [14]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    15. [15]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    16. [16]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    17. [17]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    18. [18]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(2)
  • Abstract views(764)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return