Functional organic nanoparticles for photodynamic therapy
- Corresponding author: Hong-Liang Cao, caohl@ecust.edu.cn Yun Gao, zhqpan@ecust.edu.cn Wei-An Zhang, wazhang@ecust.edu.cn
Citation:
Lei-Lei Rui, Hong-Liang Cao, Yu-Dong Xue, Li-Chao Liu, Lei Xu, Yun Gao, Wei-An Zhang. Functional organic nanoparticles for photodynamic therapy[J]. Chinese Chemical Letters,
;2016, 27(8): 1412-1420.
doi:
10.1016/j.cclet.2016.07.011
M. Ferrari. Cancer nanotechnology: opportunities and challenges[J]. Nat. Rev. Cancer, 2005,5:161-171. doi: 10.1038/nrc1566
T.J. Dougherty, G.B. Grindey, R. Fiel, K.R. Weishaupt, D.G. Boyle. photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light[J]. J. Natl. Cancer Inst., 1975,55:115-121.
W.M. Sharman, C.M. Allen, J.E. van Lier. Role of activated oxygen species in photodynamic therapy, in: Methods in Enzymology[J]. Academic Press, New York, 2000,pp.:367-400.
D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain. Photodynamic therapy for cancer[J]. Nat. Rev. Cancer, 2003,3:380-387. doi: 10.1038/nrc1071
P. Mroz, A. Yaroslavsky, G.B. Kharkwal, M.R. Hamblin. Cell death pathways in photodynamic therapy of cancer[J]. Cancers, 2011,3:2516-2539. doi: 10.3390/cancers3022516
P. Baluk, H. Hashizume, D.M. McDonald. Cellular abnormalities of blood vessels as targets in cancer[J]. Curr. Opin. Genet. Dev., 2005,15:102-111. doi: 10.1016/j.gde.2004.12.005
C. Abels. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT)[J]. Photochem. Photobiol. Sci., 2004,3:765-771. doi: 10.1039/b314241h
R.R. Allison, K. Moghissi. Photodynamic therapy (PDT): PDT mechanisms[J]. Clin. Endosc., 2013,46:24-29. doi: 10.5946/ce.2013.46.1.24
M. Niedre, M.S. Patterson, B.C. Wilson. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo[J]. Photochem. Photobiol., 2002,75:382-391. doi: 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2
J. Moan, K. Berg. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen[J]. Photochem. Photobiol., 1991,53:549-553. doi: 10.1111/php.1991.53.issue-4
B. Green, A.R.M. Cobb, C. Hopper. Photodynamic therapy in the management of lesions of the head and neck[J]. Br. J. Oral Maxillofac. Surg., 2013,51:283-287. doi: 10.1016/j.bjoms.2012.11.011
R. Allison, K. Moghissi, G. Downie, K. Dixon. Photodynamic therapy (PDT) for lung cancer[J]. Photodiagnosis Photodyn. Ther., 2011,8:231-239. doi: 10.1016/j.pdpdt.2011.03.342
M.B. Ericson, A.M. Wennberg, O. Larkö. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma[J]. Ther. Clin. Risk Manag., 2008,4:1-9.
C.M.B. Carvalho, J.P.C. Tomé, M.A.F. Faustino. Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection[J]. J. Porphyrins Phthalocyanines, 2009,13:574-577. doi: 10.1142/S1088424609000528
S.S. Lucky, K.C. Soo, Y. Zhang. Nanoparticles in photodynamic therapy[J]. Chem. Rev., 2015,115:1990-2042. doi: 10.1021/cr5004198
K.K. Ng, G. Zheng. Molecular interactions in organic nanoparticles for phototheranostic applications[J]. Chem. Rev., 2015,115:11012-11042. doi: 10.1021/acs.chemrev.5b00140
W.M. Sharman, J.E. van Lier, C.M. Allen. Targeted photodynamic therapy via receptor mediated delivery systems[J]. Adv. Drug Deliv. Rev., 2004,56:53-76. doi: 10.1016/j.addr.2003.08.015
D. Kozlowska, P. Foran, P. MacMahon. Molecular and magnetic resonance imaging: the value of immunoliposomes[J]. Adv. Drug Deliv. Rev., 2009,61:1402-1411. doi: 10.1016/j.addr.2009.09.003
M. Ethirajan, Y.H. Chen, P. Joshi, R.K. Pandey. The role of porphyrin chemistry in tumor imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2011,40:340-362. doi: 10.1039/B915149B
T.A. Debele, S. Peng, H.C. Tsai. Drug carrier for photodynamic cancer therapy[J]. Int. J. Mol. Sci., 2015,16:22094-22136. doi: 10.3390/ijms160922094
A.B. Ormond, H.S. Freeman. Dye sensitizers for photodynamic therapy[J]. Materials, 2013,6:817-840. doi: 10.3390/ma6030817
S.S. Stylli, A.H. Kaye, L. MacGregor, M. Howes, P. Rajendra. Photodynamic therapy of high grade glioma-long term survival[J]. J. Clin. Neurosci., 2005,12:389-398. doi: 10.1016/j.jocn.2005.01.006
C. Staneloudi, K.A. Smith, R. Hudson. Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy ofcancer[J]. Immunology, 2007,120:512-517. doi: 10.1111/j.1365-2567.2006.02522.x
R.R. Allison. Photodynamic therapy: oncologic horizons[J]. Future Oncol., 2014,10:123-124. doi: 10.2217/fon.13.176
Z. Huang, H.P. Xu, A.D. Meyers. Photodynamic therapy for treatment of solid tumors-potential and technical challenges[J]. Technol. Cancer Res. Treat., 2008,7:309-320. doi: 10.1177/153303460800700405
A. Prokop, J.M. Davidson. Nanovehicular intracellular delivery systems[J]. J. Pharm. Sci., 2008,97:3518-3590. doi: 10.1002/jps.21270
C. Luo, J. Sun, B.J. Sun, Z.G. He. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J]. Trends Pharm. Sci., 2014,35:556-566. doi: 10.1016/j.tips.2014.09.008
E. Paszko, C. Ehrhardt, M.O. Senge, D.P. Kelleher, J.V. Reynolds. Nanodrug applications in photodynamic therapy[J]. Photodiagn. Photodyn. Ther., 2011,8:14-29. doi: 10.1016/j.pdpdt.2010.12.001
Y.N. Konan, R. Gurny, E. Allémann. State of the art in the delivery of photosensitizers for photodynamic therapy[J]. J. Photochem. Photobiol. B: Biol., 2002,66:89-106. doi: 10.1016/S1011-1344(01)00267-6
R.R. Sawant, V.P. Torchilin. Liposomes as ‘smart’ pharmaceutical nanocarriers[J]. Soft Matter, 2010,6:4026-4044. doi: 10.1039/b923535n
J.F. Lovell, C.S. Jin, E. Huynh. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nat. Mater., 2011,10:324-332. doi: 10.1038/nmat2986
E. Huynh, G. Zheng. Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular structures[J]. Nano Today, 2014,9:212-222. doi: 10.1016/j.nantod.2014.04.012
A.S.L. Derycke, P.A.M. de Witte. Liposomes for photodynamic therapy[J]. Adv. Drug Deliv. Rev., 2004,56:17-30. doi: 10.1016/j.addr.2003.07.014
D.D. Lasic, F.J. Martin, A. Gabizon, S.K. Huang, D. Papahadjopoulos. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times[J]. Biochim. Biophys. Acta, 1991,1070:187-192. doi: 10.1016/0005-2736(91)90162-2
Y. Sadzuka, F. Iwasaki, I. Sugiyama. Phototoxicity of coproporphyrin as a novel photodynamic therapy was enhanced by liposomalization[J]. Toxicol. Lett., 2008,182:110-114. doi: 10.1016/j.toxlet.2008.09.002
R. Rahmanzadeh, P. Rai, J.P. Celli. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer[J]. Cancer Res., 2010,70:9234-9242. doi: 10.1158/0008-5472.CAN-10-1190
N. Oku, T. Ishii. Chapter 16: Antiangiogenic photodynamic therapy with targeted liposomes, in: Methods in Enzymology[J]. Academic Press, New York, 2009,pp.:313-330.
C.S. Jin, L.Y. Cui, F. Wang, J. Chen, G. Zheng. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy[J]. Adv. Healthc. Mater., 2014,3:1240-1249. doi: 10.1002/adhm.v3.8
C.S. Jin, G. Zheng. Liposomal nanostructures for photosensitizer delivery[J]. Lasers Surg. Med., 2011,43:734-748. doi: 10.1002/lsm.v43.7
P. Skupin-Mrugalska, J. Piskorz, T. Goslinski. Current status of liposomal porphyrinoid photosensitizers[J]. Drug Discov. Today, 2013,18:776-784. doi: 10.1016/j.drudis.2013.04.003
A. Yavlovich, B. Smith, K. Gupta, R. Blumenthal, A. Puri. Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications[J]. Mol. Membr. Biol., 2010,27:364-381. doi: 10.3109/09687688.2010.507788
S. Simões, J.N. Moreira, C. Fonseca, N. Düzgüneş, M.C. Pedroso de Lima. On the formulation of pH-sensitive liposomes with long circulation times[J]. Adv. Drug Deliv. Rev., 2004,56:947-965. doi: 10.1016/j.addr.2003.10.038
B. Spring, Z.M. Mai, P. Rai, S. Chang, T. Hasan, Theranostic nanocells for simultaneous imaging and photodynamic therapy of pancreatic cancer, in: Proceedings of SPIE 7551, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIX, SPIE, San Francisco, CA, 2010, pp. 755104-755111.
X.L. Liang, X.D. Li, X.L. Yue, Z.F. Dai. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer[J]. Angew. Chem. Int. Ed., 2011,50:11622-11627. doi: 10.1002/anie.201103557
O. Salata. Applications of nanoparticles in biology and medicine[J]. J. Nanobiotechnol., 2004,23. doi: 10.1186/1477-3155-2-3
Y.M. Zhou, X.L. Liang, Z.F. Dai. Porphyrin-loaded nanoparticles for cancer theranostics[J]. Nanoscale, 2016,8:12394-12405. doi: 10.1039/C5NR07849K
S.Y. Wang, W.Z. Fan, G. Kim. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy[J]. Lasers Surg. Med., 2011,43:686-695. doi: 10.1002/lsm.v43.7
A.O. Elzoghby, W.M. Samy, N.A. Elgindy. Albumin-based nanoparticles as potential controlled release drug delivery systems[J]. J. Control. Release, 2012,157:168-182. doi: 10.1016/j.jconrel.2011.07.031
K.Y. Choi, H. Chung, K.H. Min. Self-assembled hyaluronic acid nanoparticles for active tumor targeting[J]. Biomaterials, 2010,31:106-114. doi: 10.1016/j.biomaterials.2009.09.030
S.M. Abdelghany, D. Schmid, J. Deacon. Enhanced antitumor activity of the photosensitizer meso-tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles[J]. Biomacromolecules, 2013,14:302-310. doi: 10.1021/bm301858a
J. Panyam, V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Adv. Drug Deliv. Rev., 2003,55:329-347. doi: 10.1016/S0169-409X(02)00228-4
D. Bechet, P. Couleaud, C. Frochot. Nanoparticles as vehicles for delivery of photodynamic therapy agents[J]. Trends Biotechnol., 2008,26:612-621. doi: 10.1016/j.tibtech.2008.07.007
D.K. Chatterjee, L.S. Fong, Y. Zhang. Nanoparticles in photodynamic therapy: an emerging paradigm[J]. Adv. Drug Deliv. Rev., 2008,60:1627-1637. doi: 10.1016/j.addr.2008.08.003
J.R. McCarthy, J.M. Perez, C. Brückner, R. Weissleder. Polymeric nanoparticle preparation that eradicates tumors[J]. Nano Lett., 2005,5:2552-2556. doi: 10.1021/nl0519229
A. Beletsi, Z. Panagi, K. Avgoustakis. Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA-PEG diblock copolymers[J]. Int. J. Pharm., 2005,298:233-241. doi: 10.1016/j.ijpharm.2005.03.024
C. Conte, F. Ungaro, G. Maglio. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer[J]. J. Control. Release, 2013,167:40-52. doi: 10.1016/j.jconrel.2012.12.026
S.Y. Wang, G. Kim, Y.E.K. Lee. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics-a "see and treat" strategy[J]. ACS Nano, 2012,6:6843-6851. doi: 10.1021/nn301633m
H. Wu, H.H. Wang, H. Liao. Multifunctional nanostructures for tumortargeted molecular imaging and photodynamic therapy[J]. Adv. Healthc. Mater., 2016,5:311-318. doi: 10.1002/adhm.v5.3
H. Gong, Z.L. Dong, Y.M. Liu. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging[J]. Adv. Funct. Mater., 2014,24:6492-6502. doi: 10.1002/adfm.v24.41
O. Taratula, B.S. Doddapaneni, C. Schumann. Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy[J]. Chem. Mater., 2015,27:6155-6165. doi: 10.1021/acs.chemmater.5b03128
W.L. Kim, H. Cho, L. Li, H.C. Kang, K.M. Huh. Biarmed poly(ethylene glycol)-(pheophorbide a)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy[J]. Biomacromolecules, 2014,15:2224-2234. doi: 10.1021/bm5003619
H.C. Chen, J.W. Tian, W.J. He, Z.J. Guo. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. J. Am. Chem. Soc., 2015,137:1539-1547. doi: 10.1021/ja511420n
D.S. Ling, W. Park, S.J. Park. Multifunctional tumor pH-sensitive selfassembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors[J]. J. Am. Chem. Soc., 2014,136:5647-5655. doi: 10.1021/ja4108287
T.T. Wang, D.G. Wang, H.J. Yu. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor[J]. ACS Nano, 2016,10:3496-3508. doi: 10.1021/acsnano.5b07706
S.I. Shoda, H. Uyama, J.I. Kadokawa, S. Kimura, S. Kobayashi. Enzymes as green catalystsforprecisionmacromolecularsynthesis[J]. Chem.Rev., 2016,116:2307-2413. doi: 10.1021/acs.chemrev.5b00472
Y. Choi, R. Weissleder, C.H. Tung. Selective antitumor effect of novel proteasemediated photodynamic agent[J]. Cancer Res., 2006,66:7225-7229. doi: 10.1158/0008-5472.CAN-06-0448
K. Han, S.B. Wang, Q. Lei, J.Y. Zhu, X.Z. Zhang. Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy[J]. ACS Nano, 2015,9:10268-10277. doi: 10.1021/acsnano.5b04243
S.Y. Li, H. Cheng, W.X. Qiu. Protease-activable cell-penetrating peptideprotoporphyrin conjugate for targeted photodynamic therapy in vivo[J]. ACS Appl. Mater. Interfaces, 2015,7:28319-28329. doi: 10.1021/acsami.5b08637
Y.Y. Yuan, C.J. Zhang, B. Liu. A photoactivatable AIE polymer for light-controlled gene delivery: concurrent endo/lysosomal escape and DNA unpacking[J]. Angew. Chem. Int. Ed., 2015,54:11419-11423. doi: 10.1002/anie.201503640
H.B. Chen, L. Xiao, Y. Anraku. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer[J]. J. Am. Chem. Soc., 2014,136:157-163. doi: 10.1021/ja406992w
A.M. Bugaj. Targeted photodynamic therapy- a promising strategy of tumor treatment[J]. Photochem. Photobiol. Sci., 2011,10:1097-1109. doi: 10.1039/c0pp00147c
L.S. Nair, C.T. Laurencin. Biodegradable polymers as biomaterials[J]. Prog. Polym. Sci., 2007,32:762-798. doi: 10.1016/j.progpolymsci.2007.05.017
W.J. Gradishar. Albumin-bound paclitaxel: a next-generation taxane[J]. Expert Opin. Pharmacother., 2006,7:1041-1053. doi: 10.1517/14656566.7.8.1041
M. Wacker, K. Chen, A. Preuss. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties[J]. Int. J. Pharm., 2010,393:254-263. doi: 10.1016/j.ijpharm.2010.04.022
Z.H. Sheng, D.H. Hu, M.B. Zheng. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy[J]. ACS Nano, 2014,8:12310-12322. doi: 10.1021/nn5062386
Q. Chen, X.D. Liu, J.W. Chen. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Adv. Mater., 2015,27:6820-6827. doi: 10.1002/adma.201503194
T.C. Laurent, J.R. Fraser. Hyaluronan[J]. FASEB J., 1992,6:2397-2404.
J. Necas, L. Bartosikova, P. Brauner, J. Kolar. Hyaluronic acid (hyaluronan): a review[J]. Vet. Med., 2008,53:397-411.
H.Y. Yoon, H. Koo, K.Y. Choi. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy[J]. Biomaterials, 2012,33:3980-3989. doi: 10.1016/j.biomaterials.2012.02.016
J. Han, W. Park, S.J. Park, K. Na. Photosensitizer-conjugated hyaluronic acidshielded polydopamine nanoparticles for targeted photomediated tumor therapy[J]. ACS Appl. Mater. Interfaces, 2016,8:7739-7747. doi: 10.1021/acsami.6b01664
R. Hejazi, M. Amiji. Chitosan-based gastrointestinal delivery systems[J]. J. Control. Release, 2003,89:151-165. doi: 10.1016/S0168-3659(03)00126-3
J.H. Kim, Y.S. Kim, K. Park. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy[J]. Biomaterials, 2008,29:1920-1930. doi: 10.1016/j.biomaterials.2007.12.038
I.H. Oh, H.S. Min, L. Li. Cancer cell-specific photoactivity of pheophorbide aglycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice[J]. Biomaterials, 2013,34:6454-6463. doi: 10.1016/j.biomaterials.2013.05.017
Z.X. Liao, Y.C. Li, H.M. Lu, H.W. Sung. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy[J]. Biomaterials, 2014,35:500-508. doi: 10.1016/j.biomaterials.2013.09.075
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882