Recent progress in functionalized electrophosphorescent iridium(III) complexes
- Corresponding author: Hui Xu, hxu@hlju.edu.cn
Citation: Fu-Quan Han, Chun-Miao Han, Hui Xu. Recent progress in functionalized electrophosphorescent iridium(III) complexes[J]. Chinese Chemical Letters, ;2016, 27(8): 1193-1200. doi: 10.1016/j.cclet.2016.07.009
M.A. Baldo, M.E. Thompson, S.R. Forrest. High-efficiency fluorescent organic lightemitting devices using a phosphorescent sensitizer[J]. Nature, 2000,403:750-753. doi: 10.1038/35001541
M.A. McCarthy, B. Liu, E.P. Donoghue. Low-voltage, low-power, organic light-emitting transistors for active matrix displays[J]. Science, 2011,332:570-573. doi: 10.1126/science.1203052
S. Reineke, F. Lindner, G. Schwartz. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009,459:234-238. doi: 10.1038/nature08003
M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest. Very highefficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett., 1999,75:4-6. doi: 10.1063/1.124258
Y. Tao, J.J. Xiao, C. Zheng. Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors[J]. Angew. Chem. Int. Ed., 2013,52:10491-10495. doi: 10.1002/anie.201304540
D.H. Yu, F.C. Zhao, C.M. Han. Ternary ambipolar phosphine oxide hosts based on indirect linkage for highly efficient blue electrophosphorescence: towards high triplet energy, low driving voltage and stable efficiencies[J]. Adv. Mater., 2012,24:509-514. doi: 10.1002/adma.201104214
C.M. Han, Z.S. Zhang, H. Xu. Short-axis substitution approach selectively optimizes electrical properties of dibenzothiophene-based phosphine oxide hosts[J]. J. Am. Chem. Soc., 2012,134:19179-19188. doi: 10.1021/ja308273y
C.M. Han, Z.S. Zhang, H. Xu. Controllably tuning excited-state energy in ternary hosts for ultralow-voltage-driven blue electrophosphorescence[J]. Angew. Chem. Int. Ed., 2012,51:10104-10108. doi: 10.1002/anie.201202702
C.M. Han, G.H. Xie, H. Xu. A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off[J]. Adv. Mater., 2011,23:2491-2496. doi: 10.1002/adma.201100322
C.M. Han, L.P. Zhu, F.C. Zhao. Suppressing triplet state extension for highly efficient ambipolar phosphine oxide host materials in blue PHOLEDs[J]. Chem. Commun., 2014,50:2670-2672. doi: 10.1039/c3cc49020c
C.M. Han, L.P. Zhu, J. Li. Highly efficient multifluorenyl host materials with unsymmetrical molecular configurations and localized triplet states for green and red phosphorescent devices[J]. Adv. Mater., 2014,26:7070-7077. doi: 10.1002/adma.201400710
S. Lamansky, P. Djurovich, D. Murphy. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001,123:4304-4312. doi: 10.1021/ja003693s
S.Q. Sun, Q.J. Song, H.F. Yuan, Y.Q. Ding. Solid-state electrochemiluminescence of a novel iridium(III) complex[J]. Chin. Chem. Lett., 2008,19:1509-1512. doi: 10.1016/j.cclet.2008.09.031
W.G. Zhu, Y.Q. Mo, M. Yuan, W. Yang, Y. Cao. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes[J]. Appl. Phys. Lett., 2002,80:2045-2047. doi: 10.1063/1.1461418
R. Huang, X.Q. Wei, T.P. Zhang, Z.Y. Lu, M.G. Xie. Synthesis and phosphorescent properties of two novel iridium(III) complexes bearing bulky tert-butyl substituents[J]. Chin. Chem. Lett., 2007,18:1119-1123. doi: 10.1016/j.cclet.2007.06.008
Y.M. You, C.G. An, J.J. Kim, S.Y. Park. A deep red phosphorescent Ir(III) complex for use in polymer light-emitting diodes: role of the arylsilyl substituents[J]. J. Org. Chem., 2007,72:6241-6246. doi: 10.1021/jo070968e
G.J. Zhou, W.Y. Wong, B. Yao, Z.Y. Xie, L.X. Wang. Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs[J]. Angew. Chem. Int. Ed., 2007,46:1149-1151. doi: 10.1002/(ISSN)1521-3773
X.L. Yang, Y.B. Zhao, X.W. Zhang. Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their twocolour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy[J]. J. Mater. Chem., 2012,22:7136-7148. doi: 10.1039/c2jm14712b
L.Y. Guo, X.L. Zhang, H.S. Wang. New homoleptic iridium complexes with C.N=N type ligand for high efficiency orange and single emissive-layer white OLEDs[J]. J. Mater. Chem. C, 2015,3:5412-5418. doi: 10.1039/C5TC00458F
X.W. Zhang, Z. Chen, C.L. Yang. Highly efficient polymer light-emitting diodes using color-tunable carbazole-based iridium complexes[J]. Chem. Phys. Lett., 2006,422:386-390. doi: 10.1016/j.cplett.2006.02.097
C.L. Yang, X.W. Zhang, H. You. Tuning the energy level and photophysical and electroluminescent properties of heavy metal complexes by controlling the ligation of the metal with the carbon of the carbazole unit[J]. Adv. Funct. Mater., 2007,17:651-661. doi: 10.1002/(ISSN)1616-3028
K. Zhang, Z. Chen, C.L. Yang. Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes[J]. J. Mater. Chem., 2007,17:3451-3460. doi: 10.1039/b705342h
C.L. Ho, W.Y. Wong, Z.Q. Gao. Red-light-emitting iridium complexes with hole-transporting 9-arylcarbazole moieties for electrophosphorescence efficiency/color purity trade-off optimization[J]. Adv. Funct. Mater., 2008,18:319-331. doi: 10.1002/(ISSN)1616-3028
J.Y. Li, R.J. Wang, R.X. Yang, W. Zhou, X. Wang. Iridium complexes containing 2-aryl-benzothiazole ligands: color tuning and application in high-performance organic light-emitting diodes[J]. J. Mater. Chem. C, 2013,1:4171-4179. doi: 10.1039/c3tc30586d
Q.B. Mei, L.X. Wang, B. Tian. Highly efficient red iridium(III) complexes based on phthalazine derivatives for organic light-emitting diodes[J]. Dyes Pigments, 2013,97:43-51. doi: 10.1016/j.dyepig.2012.11.012
T. Peng, H. Bi, Y. Liu. Very high-efficiency red-electroluminescence devices based on an amidinate-ligated phosphorescent iridium complex[J]. J. Mater. Chem., 2009,19:8072-8074. doi: 10.1039/b917776k
V.K. Rai, M. Nishiura, M. Takimoto. Bis-cyclometalated iridium(III) complexes bearing ancillary guanidinate ligands. Synthesis, structure, and highly efficient electroluminescence[J]. Inorg. Chem., 2012,51:822-835. doi: 10.1021/ic201217a
V.K. Rai, M. Nishiura, M. Takimoto, Z.M. Hou. Guanidinate ligated iridium(III) complexes with various cyclometalated ligands: synthesis, structure, and highly efficient electrophosphorescent properties with a wide range of emission colours[J]. J. Mater. Chem. C, 2013,1:677-689.
Y.S. Feng, P. Li, X.M. Zhuang. A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000-10000 cd m-2[J]. Chem. Commun., 2015,51:12544-12547. doi: 10.1039/C5CC04297F
G.M. Li, D.X. Zhu, T. Peng. Very high efficiency orange-red light-emitting devices with low roll-off at high luminance based on an ideal host-guest system consisting of two novel phosphorescent iridium complexes with bipolar transport[J]. Adv. Funct. Mater., 2014,24:7420-7426. doi: 10.1002/adfm.v24.47
G.M. Li, Y.S. Feng, T. Peng. Highly efficient, little efficiency roll-off orange-red electrophosphorescent devices based on a bipolar iridium complex[J]. J. Mater. Chem. C, 2015,3:1452-1456. doi: 10.1039/C4TC02626H
G.P. Tan, S.M. Chen, N. Sun. Highly efficient iridium(III) phosphors with phenoxy-substituted ligands and their high-performance OLEDs[J]. J. Mater. Chem. C, 2013,1:808-821. doi: 10.1039/C2TC00123C
X.J. Liu, S.M. Wang, B. Yao. New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors[J]. Org. Electron., 2015,21:1-8. doi: 10.1016/j.orgel.2015.02.016
G.N. Li, C.W. Gao, H. Xie. New luminescent cyclometalated iridium(III) complexes containing fluorinated phenylisoquinoline-based ligands: synthesis, structures, photophysical properties and DFT calculations[J]. Chin. Chem. Lett., 2016,27:428-432. doi: 10.1016/j.cclet.2015.12.007
C. Adachi, M.A. Baldo, S.R. Forrest. High-efficiency red electrophosphorescence devices[J]. Appl. Phys. Lett., 2001,78:1622-1624. doi: 10.1063/1.1355007
M.L. Xu, G.Y. Wang, R. Zhou. Tuning iridium(III) complexes containing 2-benzo[J]. Inorg. Chim. Acta, 2007,360:3149-3154. doi: 10.1016/j.ica.2007.03.023
R.J. Wang, L.J. Deng, T. Zhang, J.Y. Li. Substituent effect on the photophysical properties, electrochemical properties and electroluminescence performance of orange-emitting iridium complexes[J]. Dalton Trans., 2012,41:6833-6841. doi: 10.1039/c2dt12206e
C. Fan, L.P. Zhu, B. Jiang. High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[J]. J. Phys. Chem. C, 2013,117:19134-19141. doi: 10.1021/jp406220c
Y.L. Lv, Y.X. Hu, J.H. Zhao. High efficiency and stable-yellow phosphorescence from OLEDs with a novel fluorinated heteroleptic iridium complex[J]. Opt. Mater., 2015,49:286-291. doi: 10.1016/j.optmat.2015.09.031
H.Y. Li, T.Y. Li, M.Y. Teng. Syntheses, photoluminescence and electroluminescence of four heteroleptic iridium complexes with 2-(5-phenyl-1, 3, 4-oxadiazol-2-yl)-phenol derivatives as ancillary ligands[J]. J. Mater. Chem. C, 2014,2:1116-1124. doi: 10.1039/C3TC31915F
C. Adachi, R.C. Kwong, P. Djurovich. Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl. Phys. Lett., 2001,79:2082-2084. doi: 10.1063/1.1400076
J. Li, P.I. Djurovich, B.D. Alleyne. Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands[J]. Polyhedron, 2004,23:419-428. doi: 10.1016/j.poly.2003.11.028
R. Ragni, E.A. Plummer, K. Brunner. Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices[J]. J. Mater. Chem., 2006,16:1161-1170. doi: 10.1039/b512081k
J.Y. Hung, Y. Chi, I.H. Pai. Blue-emitting Ir(III) phosphors with ancillary 4, 6-difluorobenzyl diphenylphosphine based cyclometalate[J]. Dalton Trans., 2009:6472-6475.
C. Cao, Y. Zhang, Q. Wei, F. Liu, X. Li. Theoretical investigations on the structural, spectroscopic and photophysical properties of iridium (III) complexes with nonconjugated ligands toward blue phosphor in OLEDs[J]. J. Organomet. Chem., 2015,780:49-55. doi: 10.1016/j.jorganchem.2014.12.029
S.J. Yeh, M.F. Wu, C.T. Chen. New dopant and host materials for blue-lightemitting phosphorescent organic electroluminescent devices[J]. Adv. Mater., 2005,17:285-289. doi: 10.1002/(ISSN)1521-4095
C. Fan, L.P. Zhu, B. Jiang. Efficient blue and bluish-green iridium phosphors: fine-tuning emissions of FIrpic by halogen substitution on pyridine-containing ligands[J]. Org. Electron., 2013,14:3163-3171. doi: 10.1016/j.orgel.2013.09.026
S. Lee, S.O. Kim, H. Shin. Deep-blue phosphorescence from perfluoro carbonylsubstituted iridium complexes[J]. J. Am. Chem. Soc., 2013,135:14321-14328. doi: 10.1021/ja4065188
J.B. Kim, S.H. Han, K. Yang. Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes[J]. Chem. Commun., 2015,51:58-61. doi: 10.1039/C4CC07768G
W. Mróz, R. Ragni, F. Galeotti. Influence of electronic and steric effects of substituted ligands coordinated to Ir(III) complexes on the solution processed OLED properties[J]. J. Mater. Chem. C, 2015,3:7506-7512. doi: 10.1039/C5TC01278C
J. Zhao, Y. Yu, X.L. Yang. Phosphorescent iridium(III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties[J]. ACS Appl. Mater. Interfaces, 2015,7:24703-24714. doi: 10.1021/acsami.5b07177
K. Ono, M. Joho, K. Saito. Synthesis and electroluminescence properties of fac-tris(2-phenylpyridine)iridium derivatives containing hole-trapping moieties[J]. Eur. J. Inorg. Chem., 2006,2006:3676-3683. doi: 10.1002/(ISSN)1099-0682
G.J. Zhou, Q. Wang, C.L. Ho. Robust tris-cyclometalated iridium(III) phosphors with ligands for effective charge carrier injection/transport: synthesis, redox, photophysical, and electrophosphorescent behavior[J]. Chem. Asian J., 2008,3:1830-1841. doi: 10.1002/asia.200800074
C. Fan, Y.H. Li, C.L. Yang. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic lightemitting diodes by solution process[J]. Chem. Mater., 2012,24:4581-4587. doi: 10.1021/cm302850w
Y.C. Zhu, L. Zhou, H.Y. Li. Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand[J]. Adv. Mater., 2011,23:4041-4046. doi: 10.1002/adma.v23.35
H.Y. Li, L. Zhou, M.Y. Teng. Highly efficient green phosphorescent OLEDs based on a novel iridium complex[J]. J. Mater. Chem. C, 2013,1:560-565. doi: 10.1039/C2TC00052K
Q.L. Xu, X. Liang, S. Zhang. Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility[J]. J. Mater. Chem. C, 2015,3:3694-3701. doi: 10.1039/C5TC00073D
W.Y. Wong, C.L. Ho, Z.Q. Gao. Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphors[J]. Angew. Chem. Int. Ed., 2006,45:7800-7803. doi: 10.1002/(ISSN)1521-3773
L.J. Deng, T. Zhang, R.J. Wang, J.Y. Li. Diphenylphosphorylpyridine-functionalized iridium complexes for high-efficiency monochromic and white organic lightemitting diodes[J]. J. Mater. Chem., 2012,22:15910-15918. doi: 10.1039/c2jm32811a
M.R. Zhu, Y.H. Li, B. Jiang. Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation[J]. Org. Electron., 2015,26:400-407. doi: 10.1016/j.orgel.2015.08.001
X.B. Xu, X.L. Yang, J.S. Dang. Trifunctional IrIII ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices[J]. Chem. Commun., 2014,50:2473-2476. doi: 10.1039/c3cc47875k
H. Xu, Z.F. Xu, Z.Y. Yue. A novel deep blue-emitting ZnI) complex based on carbazole-modified 2-(2-hydroxyphenyl)benzimidazole: synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties[J]. J. Phys. Chem. C, 2008,112:15517-15525. doi: 10.1021/jp803325g
H. Xu, D.H. Yu, L.L. Liu. Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes[J]. J. Phys. Chem. B, 2010,114:141-150. doi: 10.1021/jp909297d
L.C. Chen, Z.H. Ma, J.Q. Ding. Self-host heteroleptic green iridium dendrimers: achieving efficient non-doped device performance based on a simple molecular structure[J]. Chem. Commun., 2011,47:9519-9521. doi: 10.1039/c1cc13276h
D.B. Xia, B. Wang, B. Chen. Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes[J]. Angew. Chem. Int. Ed., 2014,53:1048-1052. doi: 10.1002/anie.201307311
J.X. Cai, T.L. Ye, X.F. Fan. An effective strategy for small molecular solutionprocessable iridium(III) complexes with ambipolar characteristics: towards efficient electrophosphorescence and reduced efficiency roll-off[J]. J. Mater. Chem., 2011,21:15405-15416. doi: 10.1039/c1jm12114f
F.Q. Han, X.L. Zhang, J. Zhang. 3D-Encapsulated iridium-complexed nanophosphors for highly efficient host-free organic light-emitting diodes[J]. Chem. Commun, 2016,52:5183-5186. doi: 10.1039/C6CC01414C
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Panpan Wang , Hongbao Fang , Mengmeng Wang , Guandong Zhang , Na Xu , Yan Su , Hongke Liu , Zhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516