Citation: Fu-Quan Han, Chun-Miao Han, Hui Xu. Recent progress in functionalized electrophosphorescent iridium(III) complexes[J]. Chinese Chemical Letters, ;2016, 27(8): 1193-1200. doi: 10.1016/j.cclet.2016.07.009 shu

Recent progress in functionalized electrophosphorescent iridium(III) complexes

  • Corresponding author: Hui Xu, hxu@hlju.edu.cn
  • Received Date: 21 April 2016
    Revised Date: 3 July 2016
    Accepted Date: 6 July 2016
    Available Online: 16 August 2016

Figures(6)

  • Iridium(III) complexes are one of the most important electrophosphorescent dyes with tunable emissions in the range of visible and near infrared lights, high photoluminescence yields and short lifetimes for high-efficiency organic light-emitting diodes (OLED) with 100% exciton harvesting. This review summarizes the recent development of electroluminescent Ir3+ complexes functionalized with host-featured carrier-transporting groups, with emphasis on correlations between functionalization, optoelectronic properties and device performance. According to the introducing approaches, the complexes were sorted with conjugated and aliphatic linkages, as well as the types of functional groups. The modification effect on physical properties and the state-of-the-art device performances were discussed.
  • 加载中
    1. [1]

      M.A. Baldo, M.E. Thompson, S.R. Forrest. High-efficiency fluorescent organic lightemitting devices using a phosphorescent sensitizer[J]. Nature, 2000,403:750-753. doi: 10.1038/35001541

    2. [2]

      M.A. McCarthy, B. Liu, E.P. Donoghue. Low-voltage, low-power, organic light-emitting transistors for active matrix displays[J]. Science, 2011,332:570-573. doi: 10.1126/science.1203052

    3. [3]

      S. Reineke, F. Lindner, G. Schwartz. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009,459:234-238. doi: 10.1038/nature08003

    4. [4]

      M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest. Very highefficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett., 1999,75:4-6. doi: 10.1063/1.124258

    5. [5]

      Y. Tao, J.J. Xiao, C. Zheng. Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors[J]. Angew. Chem. Int. Ed., 2013,52:10491-10495. doi: 10.1002/anie.201304540

    6. [6]

      D.H. Yu, F.C. Zhao, C.M. Han. Ternary ambipolar phosphine oxide hosts based on indirect linkage for highly efficient blue electrophosphorescence: towards high triplet energy, low driving voltage and stable efficiencies[J]. Adv. Mater., 2012,24:509-514. doi: 10.1002/adma.201104214

    7. [7]

      C.M. Han, Z.S. Zhang, H. Xu. Short-axis substitution approach selectively optimizes electrical properties of dibenzothiophene-based phosphine oxide hosts[J]. J. Am. Chem. Soc., 2012,134:19179-19188. doi: 10.1021/ja308273y

    8. [8]

      C.M. Han, Z.S. Zhang, H. Xu. Controllably tuning excited-state energy in ternary hosts for ultralow-voltage-driven blue electrophosphorescence[J]. Angew. Chem. Int. Ed., 2012,51:10104-10108. doi: 10.1002/anie.201202702

    9. [9]

      C.M. Han, G.H. Xie, H. Xu. A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off[J]. Adv. Mater., 2011,23:2491-2496. doi: 10.1002/adma.201100322

    10. [10]

      C.M. Han, L.P. Zhu, F.C. Zhao. Suppressing triplet state extension for highly efficient ambipolar phosphine oxide host materials in blue PHOLEDs[J]. Chem. Commun., 2014,50:2670-2672. doi: 10.1039/c3cc49020c

    11. [11]

      C.M. Han, L.P. Zhu, J. Li. Highly efficient multifluorenyl host materials with unsymmetrical molecular configurations and localized triplet states for green and red phosphorescent devices[J]. Adv. Mater., 2014,26:7070-7077. doi: 10.1002/adma.201400710

    12. [12]

      S. Lamansky, P. Djurovich, D. Murphy. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001,123:4304-4312. doi: 10.1021/ja003693s

    13. [13]

      S.Q. Sun, Q.J. Song, H.F. Yuan, Y.Q. Ding. Solid-state electrochemiluminescence of a novel iridium(III) complex[J]. Chin. Chem. Lett., 2008,19:1509-1512. doi: 10.1016/j.cclet.2008.09.031

    14. [14]

      W.G. Zhu, Y.Q. Mo, M. Yuan, W. Yang, Y. Cao. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes[J]. Appl. Phys. Lett., 2002,80:2045-2047. doi: 10.1063/1.1461418

    15. [15]

      R. Huang, X.Q. Wei, T.P. Zhang, Z.Y. Lu, M.G. Xie. Synthesis and phosphorescent properties of two novel iridium(III) complexes bearing bulky tert-butyl substituents[J]. Chin. Chem. Lett., 2007,18:1119-1123. doi: 10.1016/j.cclet.2007.06.008

    16. [16]

      Y.M. You, C.G. An, J.J. Kim, S.Y. Park. A deep red phosphorescent Ir(III) complex for use in polymer light-emitting diodes: role of the arylsilyl substituents[J]. J. Org. Chem., 2007,72:6241-6246. doi: 10.1021/jo070968e

    17. [17]

      G.J. Zhou, W.Y. Wong, B. Yao, Z.Y. Xie, L.X. Wang. Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs[J]. Angew. Chem. Int. Ed., 2007,46:1149-1151. doi: 10.1002/(ISSN)1521-3773

    18. [18]

      X.L. Yang, Y.B. Zhao, X.W. Zhang. Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their twocolour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy[J]. J. Mater. Chem., 2012,22:7136-7148. doi: 10.1039/c2jm14712b

    19. [19]

      L.Y. Guo, X.L. Zhang, H.S. Wang. New homoleptic iridium complexes with C.N=N type ligand for high efficiency orange and single emissive-layer white OLEDs[J]. J. Mater. Chem. C, 2015,3:5412-5418. doi: 10.1039/C5TC00458F

    20. [20]

      X.W. Zhang, Z. Chen, C.L. Yang. Highly efficient polymer light-emitting diodes using color-tunable carbazole-based iridium complexes[J]. Chem. Phys. Lett., 2006,422:386-390. doi: 10.1016/j.cplett.2006.02.097

    21. [21]

      C.L. Yang, X.W. Zhang, H. You. Tuning the energy level and photophysical and electroluminescent properties of heavy metal complexes by controlling the ligation of the metal with the carbon of the carbazole unit[J]. Adv. Funct. Mater., 2007,17:651-661. doi: 10.1002/(ISSN)1616-3028

    22. [22]

      K. Zhang, Z. Chen, C.L. Yang. Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes[J]. J. Mater. Chem., 2007,17:3451-3460. doi: 10.1039/b705342h

    23. [23]

      C.L. Ho, W.Y. Wong, Z.Q. Gao. Red-light-emitting iridium complexes with hole-transporting 9-arylcarbazole moieties for electrophosphorescence efficiency/color purity trade-off optimization[J]. Adv. Funct. Mater., 2008,18:319-331. doi: 10.1002/(ISSN)1616-3028

    24. [24]

      J.Y. Li, R.J. Wang, R.X. Yang, W. Zhou, X. Wang. Iridium complexes containing 2-aryl-benzothiazole ligands: color tuning and application in high-performance organic light-emitting diodes[J]. J. Mater. Chem. C, 2013,1:4171-4179. doi: 10.1039/c3tc30586d

    25. [25]

      Q.B. Mei, L.X. Wang, B. Tian. Highly efficient red iridium(III) complexes based on phthalazine derivatives for organic light-emitting diodes[J]. Dyes Pigments, 2013,97:43-51. doi: 10.1016/j.dyepig.2012.11.012

    26. [26]

      T. Peng, H. Bi, Y. Liu. Very high-efficiency red-electroluminescence devices based on an amidinate-ligated phosphorescent iridium complex[J]. J. Mater. Chem., 2009,19:8072-8074. doi: 10.1039/b917776k

    27. [27]

      V.K. Rai, M. Nishiura, M. Takimoto. Bis-cyclometalated iridium(III) complexes bearing ancillary guanidinate ligands. Synthesis, structure, and highly efficient electroluminescence[J]. Inorg. Chem., 2012,51:822-835. doi: 10.1021/ic201217a

    28. [28]

      V.K. Rai, M. Nishiura, M. Takimoto, Z.M. Hou. Guanidinate ligated iridium(III) complexes with various cyclometalated ligands: synthesis, structure, and highly efficient electrophosphorescent properties with a wide range of emission colours[J]. J. Mater. Chem. C, 2013,1:677-689.

    29. [29]

      Y.S. Feng, P. Li, X.M. Zhuang. A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000-10000 cd m-2[J]. Chem. Commun., 2015,51:12544-12547. doi: 10.1039/C5CC04297F

    30. [30]

      G.M. Li, D.X. Zhu, T. Peng. Very high efficiency orange-red light-emitting devices with low roll-off at high luminance based on an ideal host-guest system consisting of two novel phosphorescent iridium complexes with bipolar transport[J]. Adv. Funct. Mater., 2014,24:7420-7426. doi: 10.1002/adfm.v24.47

    31. [31]

      G.M. Li, Y.S. Feng, T. Peng. Highly efficient, little efficiency roll-off orange-red electrophosphorescent devices based on a bipolar iridium complex[J]. J. Mater. Chem. C, 2015,3:1452-1456. doi: 10.1039/C4TC02626H

    32. [32]

      G.P. Tan, S.M. Chen, N. Sun. Highly efficient iridium(III) phosphors with phenoxy-substituted ligands and their high-performance OLEDs[J]. J. Mater. Chem. C, 2013,1:808-821. doi: 10.1039/C2TC00123C

    33. [33]

      X.J. Liu, S.M. Wang, B. Yao. New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors[J]. Org. Electron., 2015,21:1-8. doi: 10.1016/j.orgel.2015.02.016

    34. [34]

      G.N. Li, C.W. Gao, H. Xie. New luminescent cyclometalated iridium(III) complexes containing fluorinated phenylisoquinoline-based ligands: synthesis, structures, photophysical properties and DFT calculations[J]. Chin. Chem. Lett., 2016,27:428-432. doi: 10.1016/j.cclet.2015.12.007

    35. [35]

      C. Adachi, M.A. Baldo, S.R. Forrest. High-efficiency red electrophosphorescence devices[J]. Appl. Phys. Lett., 2001,78:1622-1624. doi: 10.1063/1.1355007

    36. [36]

      M.L. Xu, G.Y. Wang, R. Zhou. Tuning iridium(III) complexes containing 2-benzo[J]. Inorg. Chim. Acta, 2007,360:3149-3154. doi: 10.1016/j.ica.2007.03.023

    37. [37]

      R.J. Wang, L.J. Deng, T. Zhang, J.Y. Li. Substituent effect on the photophysical properties, electrochemical properties and electroluminescence performance of orange-emitting iridium complexes[J]. Dalton Trans., 2012,41:6833-6841. doi: 10.1039/c2dt12206e

    38. [38]

      C. Fan, L.P. Zhu, B. Jiang. High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[J]. J. Phys. Chem. C, 2013,117:19134-19141. doi: 10.1021/jp406220c

    39. [39]

      Y.L. Lv, Y.X. Hu, J.H. Zhao. High efficiency and stable-yellow phosphorescence from OLEDs with a novel fluorinated heteroleptic iridium complex[J]. Opt. Mater., 2015,49:286-291. doi: 10.1016/j.optmat.2015.09.031

    40. [40]

      H.Y. Li, T.Y. Li, M.Y. Teng. Syntheses, photoluminescence and electroluminescence of four heteroleptic iridium complexes with 2-(5-phenyl-1, 3, 4-oxadiazol-2-yl)-phenol derivatives as ancillary ligands[J]. J. Mater. Chem. C, 2014,2:1116-1124. doi: 10.1039/C3TC31915F

    41. [41]

      C. Adachi, R.C. Kwong, P. Djurovich. Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl. Phys. Lett., 2001,79:2082-2084. doi: 10.1063/1.1400076

    42. [42]

      J. Li, P.I. Djurovich, B.D. Alleyne. Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands[J]. Polyhedron, 2004,23:419-428. doi: 10.1016/j.poly.2003.11.028

    43. [43]

      R. Ragni, E.A. Plummer, K. Brunner. Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices[J]. J. Mater. Chem., 2006,16:1161-1170. doi: 10.1039/b512081k

    44. [44]

      J.Y. Hung, Y. Chi, I.H. Pai. Blue-emitting Ir(III) phosphors with ancillary 4, 6-difluorobenzyl diphenylphosphine based cyclometalate[J]. Dalton Trans., 2009:6472-6475.

    45. [45]

      C. Cao, Y. Zhang, Q. Wei, F. Liu, X. Li. Theoretical investigations on the structural, spectroscopic and photophysical properties of iridium (III) complexes with nonconjugated ligands toward blue phosphor in OLEDs[J]. J. Organomet. Chem., 2015,780:49-55. doi: 10.1016/j.jorganchem.2014.12.029

    46. [46]

      S.J. Yeh, M.F. Wu, C.T. Chen. New dopant and host materials for blue-lightemitting phosphorescent organic electroluminescent devices[J]. Adv. Mater., 2005,17:285-289. doi: 10.1002/(ISSN)1521-4095

    47. [47]

      C. Fan, L.P. Zhu, B. Jiang. Efficient blue and bluish-green iridium phosphors: fine-tuning emissions of FIrpic by halogen substitution on pyridine-containing ligands[J]. Org. Electron., 2013,14:3163-3171. doi: 10.1016/j.orgel.2013.09.026

    48. [48]

      S. Lee, S.O. Kim, H. Shin. Deep-blue phosphorescence from perfluoro carbonylsubstituted iridium complexes[J]. J. Am. Chem. Soc., 2013,135:14321-14328. doi: 10.1021/ja4065188

    49. [49]

      J.B. Kim, S.H. Han, K. Yang. Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes[J]. Chem. Commun., 2015,51:58-61. doi: 10.1039/C4CC07768G

    50. [50]

      W. Mróz, R. Ragni, F. Galeotti. Influence of electronic and steric effects of substituted ligands coordinated to Ir(III) complexes on the solution processed OLED properties[J]. J. Mater. Chem. C, 2015,3:7506-7512. doi: 10.1039/C5TC01278C

    51. [51]

      J. Zhao, Y. Yu, X.L. Yang. Phosphorescent iridium(III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties[J]. ACS Appl. Mater. Interfaces, 2015,7:24703-24714. doi: 10.1021/acsami.5b07177

    52. [52]

      K. Ono, M. Joho, K. Saito. Synthesis and electroluminescence properties of fac-tris(2-phenylpyridine)iridium derivatives containing hole-trapping moieties[J]. Eur. J. Inorg. Chem., 2006,2006:3676-3683. doi: 10.1002/(ISSN)1099-0682

    53. [53]

      G.J. Zhou, Q. Wang, C.L. Ho. Robust tris-cyclometalated iridium(III) phosphors with ligands for effective charge carrier injection/transport: synthesis, redox, photophysical, and electrophosphorescent behavior[J]. Chem. Asian J., 2008,3:1830-1841. doi: 10.1002/asia.200800074

    54. [54]

      C. Fan, Y.H. Li, C.L. Yang. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic lightemitting diodes by solution process[J]. Chem. Mater., 2012,24:4581-4587. doi: 10.1021/cm302850w

    55. [55]

      Y.C. Zhu, L. Zhou, H.Y. Li. Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand[J]. Adv. Mater., 2011,23:4041-4046. doi: 10.1002/adma.v23.35

    56. [56]

      H.Y. Li, L. Zhou, M.Y. Teng. Highly efficient green phosphorescent OLEDs based on a novel iridium complex[J]. J. Mater. Chem. C, 2013,1:560-565. doi: 10.1039/C2TC00052K

    57. [57]

      Q.L. Xu, X. Liang, S. Zhang. Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility[J]. J. Mater. Chem. C, 2015,3:3694-3701. doi: 10.1039/C5TC00073D

    58. [58]

      W.Y. Wong, C.L. Ho, Z.Q. Gao. Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphors[J]. Angew. Chem. Int. Ed., 2006,45:7800-7803. doi: 10.1002/(ISSN)1521-3773

    59. [59]

      L.J. Deng, T. Zhang, R.J. Wang, J.Y. Li. Diphenylphosphorylpyridine-functionalized iridium complexes for high-efficiency monochromic and white organic lightemitting diodes[J]. J. Mater. Chem., 2012,22:15910-15918. doi: 10.1039/c2jm32811a

    60. [60]

      M.R. Zhu, Y.H. Li, B. Jiang. Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation[J]. Org. Electron., 2015,26:400-407. doi: 10.1016/j.orgel.2015.08.001

    61. [61]

      X.B. Xu, X.L. Yang, J.S. Dang. Trifunctional IrIII ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices[J]. Chem. Commun., 2014,50:2473-2476. doi: 10.1039/c3cc47875k

    62. [62]

      H. Xu, Z.F. Xu, Z.Y. Yue. A novel deep blue-emitting ZnI) complex based on carbazole-modified 2-(2-hydroxyphenyl)benzimidazole: synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties[J]. J. Phys. Chem. C, 2008,112:15517-15525. doi: 10.1021/jp803325g

    63. [63]

      H. Xu, D.H. Yu, L.L. Liu. Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes[J]. J. Phys. Chem. B, 2010,114:141-150. doi: 10.1021/jp909297d

    64. [64]

      L.C. Chen, Z.H. Ma, J.Q. Ding. Self-host heteroleptic green iridium dendrimers: achieving efficient non-doped device performance based on a simple molecular structure[J]. Chem. Commun., 2011,47:9519-9521. doi: 10.1039/c1cc13276h

    65. [65]

      D.B. Xia, B. Wang, B. Chen. Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes[J]. Angew. Chem. Int. Ed., 2014,53:1048-1052. doi: 10.1002/anie.201307311

    66. [66]

      J.X. Cai, T.L. Ye, X.F. Fan. An effective strategy for small molecular solutionprocessable iridium(III) complexes with ambipolar characteristics: towards efficient electrophosphorescence and reduced efficiency roll-off[J]. J. Mater. Chem., 2011,21:15405-15416. doi: 10.1039/c1jm12114f

    67. [67]

      F.Q. Han, X.L. Zhang, J. Zhang. 3D-Encapsulated iridium-complexed nanophosphors for highly efficient host-free organic light-emitting diodes[J]. Chem. Commun, 2016,52:5183-5186. doi: 10.1039/C6CC01414C

  • 加载中
    1. [1]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    2. [2]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    3. [3]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    4. [4]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    5. [5]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    8. [8]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    9. [9]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    10. [10]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    14. [14]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    15. [15]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    16. [16]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    17. [17]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    18. [18]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    19. [19]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    20. [20]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

Metrics
  • PDF Downloads(3)
  • Abstract views(699)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return