New advances in small molecule hole-transporting materials for perovskite solar cells
- Corresponding author: Zuo-Quan Jiang, zqjiang@suda.edu.cn
Citation: Ya-Kun Wang, Zuo-Quan Jiang, Liang-Sheng Liao. New advances in small molecule hole-transporting materials for perovskite solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1293-1303. doi: 10.1016/j.cclet.2016.07.004
L. Etgar, P. Gao, Z. Xue. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J. Am. Chem. Soc., 2012,134:17396-17399. doi: 10.1021/ja307789s
M.Z. Liu, M.B. Johnston, H.J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501:395-398. doi: 10.1038/nature12509
P. Gao, M. Grätzel, M.K. Nazeeruddin. Organohalide lead perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7:2448-2463. doi: 10.1039/C4EE00942H
M.A. Green, A. Ho-Baillie, H.J. Snaith. The emergence of perovskite solar cells[J]. Nat. Photonics, 2014,8:506-514. doi: 10.1038/nphoton.2014.134
P. Qin, S. Paek, M.I. Dar. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. J. Am. Chem. Soc., 2014,136:8516-8519. doi: 10.1021/ja503272q
M. Grätzel. The light and shade of perovskite solar cells[J]. Nat. Mater., 2014,13:838-842. doi: 10.1038/nmat4065
H.S. Kim, C.R. Lee, J.H. Im. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2591.
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604
G.E. Eperon, S.D. Stranks, C. Menelaou. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h
J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Adv. Mater., 2014,26:4991-4998. doi: 10.1002/adma.201401137
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis. Lead-free solidstate organic-inorganic halide perovskite solar cells[J]. Nat. Photonics, 2014,8:489-494. doi: 10.1038/nphoton.2014.82
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. J. Am. Chem. Soc., 2014,136:8094-8099. doi: 10.1021/ja5033259
N.K. Noel, S.D. Stranks, A. Abate. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7:3061-3068. doi: 10.1039/C4EE01076K
J.H. Heo, D.H. Song, S.H. Im. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spincoating process[J]. Adv. Mater., 2014,26:8179-8183. doi: 10.1002/adma.201403140
J. Burschka, N. Pellet, S.J. Moon. Sequential deposition as a route to highperformance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340
W. Nie, H. Tsai, R. Asadpour. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472
H.P. Zhou, Q. Chen, G. Li. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050
G. Hodes. Perovskite-based solar cells[J]. Science, 2013,342:317-318. doi: 10.1126/science.1245473
P. Qin, S. Tanaka, S. Ito. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat. Commun., 2014,53834.
Y. Wang, S. Bai, L. Cheng. High-efficiency flexible solar cells based on organometal halide perovskites[J]. Adv. Mater., 2016,28:4532-4540. doi: 10.1002/adma.v28.22
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r
J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park. 6.5% efficient perovskite quantumdot-sensitized solar cell[J]. Nanoscale, 2011,3:4088-4093. doi: 10.1039/c1nr10867k
Y.K. Song, S.T. Lv, X.C. Liu. Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:15239-15242. doi: 10.1039/C4CC06493C
J.W. Jung, C.C. Chueh, A.K.Y. Jen. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Adv. Energy Mater., 2015,51500486. doi: 10.1002/aenm.201500486
G.A. Sepalage, S. Meyer, A. Pascoe. Copper (Ⅰ) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis[J]. Adv. Funct. Mater., 2015,25:5650-5651. doi: 10.1002/adfm.201502541
H.R. Li, K.W. Fu, A. Hagfeldt. A Simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed, 2014,53:4085-4088. doi: 10.1002/anie.201310877
Y.K. Wang, Z.C. Yuan, G.Z. Shi. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv. Funct. Mater., 2016,26:1375-1381. doi: 10.1002/adfm.v26.9
K.G. Lim, H.B. Kim, J. Jeong. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function[J]. Adv. Mater., 2014,26:6461-6466. doi: 10.1002/adma.201401775
C.C. Chueh, C.Z. Li, A.K.Y. Jen. Recent progress and perspective in solutionprocessed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy Environ. Sci., 2015,8:1160-1189. doi: 10.1039/C4EE03824J
Z.J. Ning, Y. Fu, H. Tian. Improvement of dye-sensitized solar cells: what we know and what we need to know[J]. Energy Environ. Sci., 2010,3:1170-1181. doi: 10.1039/c003841e
N.J. Jeon, J. Lee, J.H. Noh. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. J. Am. Chem. Soc., 2013,135:19087-19090. doi: 10.1021/ja410659k
M.K. Wang, J.Y. Liu, N.L. Cevey-Ha. High efficiency solid-state sensitized heterojunction photovoltaic device[J]. Nano Today, 2010,5:169-174. doi: 10.1016/j.nantod.2010.04.001
B. Cai, Y.D. Xing, Z. Yang, W.H. Zhang, J.S. Qiu. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b
J.J. Wang, S.R. Wang, X.G. Li. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:5829-5832. doi: 10.1039/c4cc01637h
S. Park, J.H. Heo, C.H. Cheon. A[2, 2] paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:24215-24220. doi: 10.1039/C5TA08417B
M. Cheng, B. Xu, C. Chen. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv. Energy Mater., 2015,51401720. doi: 10.1002/aenm.201401720
J. Liu, Y.Z. Wu, C.J. Qin. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy Environ. Sci, 2014,7:2963-2967. doi: 10.1039/C4EE01589D
M. Franckevičius, A. Mishra, F. Kreuzer. A dopant-free spirobi[cyclopenta[2, 1-b: 3, 4-b'] dithiophene] based hole-transport material for efficient perovskite solar cells[J]. Mater. Horiz, 2015,2:613-618. doi: 10.1039/C5MH00154D
N.J. Jeon, H.G. Lee, Y.C. Kim. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. So, 2014,136:7837-7840. doi: 10.1021/ja502824c
P. Ganesan, K.W. Fu, P. Gao. A simple spiro-type hole transporting material for efficient perovskite solar cells[J]. Energy Environ. Sci, 2015,8:1986-1991. doi: 10.1039/C4EE03773A
S.Y. Ma, H. Zhang, N. Zhao. Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:12139-12144. doi: 10.1039/C5TA01155H
M.H. Li, C.W. Hsu, P.S. Shen. Novel spiro-based hole transporting materials for efficient perovskite solar cells[J]. Chem. Commun., 2015,51:15518-15521. doi: 10.1039/C5CC04405G
S.S. Reddy, K. Gunasekar, J.H. Heo. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J]. Adv. Mater., 2016,28:686-693. doi: 10.1002/adma.201503729
H. Choi, J.W. Cho, M.S. Kang, J. Ko. Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells[J]. Chem. Commun., 2015,51:9305-9308. doi: 10.1039/C5CC01471A
H. Choi, K. Do, S. Park, J.S. Yu, J. Ko. Efficient hole transporting materials with two or four N, N-Di(4-methoxyphenyl)aminophenyl arms on an ethene unit for perovskite solar cells[J]. Chem. Eur. J., 2015,21:15919-15923. doi: 10.1002/chem.201502741
M.S. Kang, S.D. Sung, I.T. Choi. Novel carbazole-based hole-transporting materials with star-shaped chemical structures for perovskite-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:22213-22217. doi: 10.1021/acsami.5b04662
P. Gratia, A. Magomedov, T. Malinauskas. A methoxydiphenylamine-substituted carbazole twin derivative: an efficient hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed, 2015,54:11409-11413. doi: 10.1002/anie.201504666
F.G. Zhang, X.C. Yang, M. Cheng. Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:24272-24280. doi: 10.1039/C5TA07507F
J. Cao, Y.M. Liu, X.J. Jing. Well-defined thiolated nanographene as holetransporting material for efficient and stable perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:10914-10917. doi: 10.1021/jacs.5b06493
A. Krishna, D. Sabba, J. Yin. Facile synthesis of a furan-arylamine holetransporting material for high-efficiency, mesoscopic perovskite solar cells[J]. Chem. Eur. J., 2015,21:15113-15117. doi: 10.1002/chem.201503099
H. Nishimura, N. Ishida, A. Shimazaki. Hole-transporting materials with a two-dimensionally expanded π-system around an azulene core for efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008
J. Das, R.B.K. Siram, D. Cahen, B. Rybtchinski, G. Hodes. Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:20305-20312. doi: 10.1039/C5TA04828A
M.L. Petrus, T. Bein, T.J. Dingemans, P. Docampo. A low cost azomethine-based hole transporting material for perovskite photovoltaics[J]. J. Mater. Chem. A3, 2015:12159-12162.
Y.S. Liu, Q. Chen, H.S. Duan. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:11940-11947. doi: 10.1039/C5TA02502H
C. Steck, M. Franckevicius, S.M. Zakeeruddin. A-D-A-type S, N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells[J]. J. Mater. Chem, 2015,3:17738-17746. doi: 10.1039/C5TA03865K
A. Abate, S. Paek, F. Giordano. Silolothiophene-linked triphenylamines as stable holetransporting materials for high efficiency perovskite solar cells[J]. Energy Environ. Sci., 2015,8:2946-2953. doi: 10.1039/C5EE02014J
C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg. Chem., 2013,52:9019-9038. doi: 10.1021/ic401215x
Y. Liu, Z. Hong, Q. Chen. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv. Mater., 2016,28:440-446. doi: 10.1002/adma.v28.3
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
Wen-Bo Wei , Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383