Recent developments of di-amide/imide-containing small molecular non-fullerene acceptors for organic solar cells
- Corresponding author: Zi-Tong Liu, zitong_@iccas.ac.cn
Citation:
He-Wei Luo, Zi-Tong Liu. Recent developments of di-amide/imide-containing small molecular non-fullerene acceptors for organic solar cells[J]. Chinese Chemical Letters,
;2016, 27(8): 1283-1292.
doi:
10.1016/j.cclet.2016.07.003
(a) L.Y. Lu, T.Y. Zheng, Q.H. Wu, et al., Recent advances in bulk heterojunction polymer solar cells, Chem. Rev. 115 (2015) 12666-12731;(b) A.J. Heeger, 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation, Adv. Mater. 26 (2014) 10-28.
(a) Z.B. Henson, K. Mu¨ llen, G.C. Bazan, Design strategies for organic semiconductors beyond the molecular formula, Nat. Chem. 4 (2012) 699-704;(b) L. Ye, S.Q. Zhang, L.J. Huo, M.J. Zhang, J.H. Hou, Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene, Acc. Chem. Res. 47 (2014) 1595-1603;(c) Y.F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res. 5 (2012) 723-733.
Y. Liu, J. Zhao, Z. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,55293. doi: 10.1038/ncomms6293
Y.F. Li. Fullerene-bisadduct acceptors for polymer solar cells[J]. Chem.-Asian J., 2013,10:2316-2328.
(a) A.F. Eftaiha, J.P. Sun, I.G. Hill, G.C. Welch, Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells, J.1290 H.-W. Luo, Z.-T. Liu / Chinese Chemical Letters 27 (2016) 1283-1292 Mater. Chem. A2 (2014) 1201-1213;(b) C.L. Zhan, X.L. Zhang, J.N. Yao, New advances in non-fullerene acceptor based organic solar cells, RSC Adv. 5 (2015) 93002-93026; (c) Y.Z. Lin, X.W. Zhan, Designing efficient non-fullerene acceptors by tailoring extended fused-rings with electron-deficient groups, Adv. Energy Mater. 5 (2015)(1501) 063;(d) X. Guo, D.D. Tu, X. Liu, Recent advances in rylene diimide polymer acceptors for all-polymer solar cells, J. Energ. Chem. 24 (2015) 675-685;(e) C.L. Zhan, J.N. Yao, More than conformational "twisting" or "coplanarity":molecular strategies for designing high-efficiency nonfullerene organic solar cells, Chem. Mater. 28 (2016) 1948-1964.
(a) W.C. Zhao, D.P. Qian, S.Q. Zhang, et al., Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater. (2016)4734-4739;(b) Y.Z. Lin, F.W. Zhao, Q. He, et al., High-performance electron acceptor with thienyl side chains for organic photovoltaics, J. Am. Chem. Soc. 138(2016) 4955-4961; (c) Y.Z. Lin, Q. He, F.W. Zhao, et al., A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency, J. Am. Chem. Soc. 138 (2016) 2973-2976; (d) H.J. Bin, Z.G. Zhang, L. Gao, et al., Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency, J. Am. Chem. Soc. 138 (2016) 4657-4664.
(a) X.G. Guo, A. Facchetti, T.J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114 (2014) 8943-9021;(b) Z.T. Liu, G.X. Zhang, Z.X. Cai, et al., New organic semiconductors with imide/amide-containing molecular systems, Adv. Mater. 26 (2014) 6965-6977.
D.G. Farnum, G. Mehta, G.G.I. Moore, F.P. Siegal. Attempted reformatskii reaction of benzonitrile, 1, 4-diketo-3, 6-diphenylpyrrolo[J]. Tetrahedron Lett., 1974,15:2549-2552. doi: 10.1016/S0040-4039(01)93202-2
(a) Z.R. Yi, S. Wang, Y.Q. Liu, Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27 (2015) 3589-3606; (b) H.W. Luo, C.M. Yu, Z.T. Liu, et al., Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2 (2016) e1600076; (c) X.K. Gao, Z. Zhao, High mobility organic semiconductors for field-effect transistors, Sci. Chin. Chem. 58 (2015) 947-968.
W.W. Li, K.H. Hendriks, M.M. Wien, R.A.J. Janssen. Diketopyrrolopyrrole polymers for organic solar cells[J]. Acc. Chem. Res., 2016,49:78-85. doi: 10.1021/acs.accounts.5b00334
M. Kaur, D.H. Choi. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications[J]. Chem. Soc. Rev., 2015,44:58-77. doi: 10.1039/C4CS00248B
Y.Z. Lin, Y.F. Li, X.W. Zhan. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells[J]. Adv. Energy Mater, 2013,3:724-728. doi: 10.1002/aenm.201200911
H. Patil, W.X. Zu, A. Gupta. A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage[J]. Phys. Chem. Chem. Phys, 2014,16:23837-23842. doi: 10.1039/C4CP03727H
S.X. Li, J.L. Yan, C.Z. Li. A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells[J]. J. Mater. Chem. A, 2016,4:3777-3783. doi: 10.1039/C6TA00056H
H.Q. Shi, W.F. Fu, M.M. Shi, J. Ling, H.Z. Chen. A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells[J]. J. Mater. Chem. A, 2015,3:1902-1905. doi: 10.1039/C4TA06035K
A.M. Raynor, A. Gupta, H. Patil, A. Bilic, S.V. Bhosale. A diketopyrrolopyrrole and benzothiadiazole based small molecule electron acceptor: design, synthesis, characterization and photovoltaic properties[J]. RSC Adv, 2014,4:57635-57638. doi: 10.1039/C4RA09668A
C.M. Yu, C. He, Y. Yang. New conjugated molecules with two and three dithienyldiketopyrrolopyrrole (DPP) moieties substituted at meta positions of benzene toward p- and n-type organic photovoltaic materials[J]. Chem. Asian J., 2014,9:1570-1578. doi: 10.1002/asia.v9.6
Y. Yang, G.X. Zhang, C.M. Yu. New conjugated molecular scaffolds based on[J]. Chem. Commun., 2014,50:9939-9942. doi: 10.1039/C4CC04384G
X.F. Wu, W.F. Fu, Z. Xu. Spiro linkage as an alternative strategy for promising nonfullerene acceptors in organic solar cells[J]. Adv. Funct. Mater., 2015,25:5954-5966. doi: 10.1002/adfm.201502413
S.X. Li, W.Q. Liu, M.M. Shi. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage[J]. Energy Environ. Sci, 2016,9:604-610. doi: 10.1039/C5EE03481G
(a) E. Wang, W. Mammo, M.R. Andersson, 25th anniversary article: isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors, Adv. Mater. 26 (2014) 1801-1826;(b) T. Lei, J.Y. Wang, J. Pei, Design synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47 (2014) 1117-1126;(c) J.G. Mei, K.R. Graham, R. Stalder, J.R. Reynolds, Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells, Org. Lett. 12 (2010) 660-663.
A.D. Hendsbee, S.M. McAfee, J.P. Sun. Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells[J]. J. Mater. Chem. C, 2015,3:8904-8915. doi: 10.1039/C5TC01877C
J.M. Topple, S.M. McAfee, G.C. Welch, I.G. Hill. Pivotal factors in solution-processed, non-fullerene, all small-molecule organic solar cell device optimization[J]. Org. Electron., 2015,27:197-201. doi: 10.1016/j.orgel.2015.09.020
S.M. McAfee, J.M. Topple, J.P. Sun, I.G. Hill, G.C. Welch. The structural evolution of an isoindigo-based non-fullerene acceptor for use in organic photovoltaics[J]. RSC Adv., 2015,5:80098-80109. doi: 10.1039/C5RA16696A
X. Liu, Y. Xie, H.B. Zhao. Star-shaped isoindigo-based small molecules as potential non-fullerene acceptors in bulk heterojunction solar cells[J]. N. J. Chem., 2015,39:8771-8779. doi: 10.1039/C5NJ01893E
(a) X.W. Zhan, A. Facchetti, S. Barlow, et al., Rylene and related diimides for organic electronics, Adv. Mater. 23 (2011) 268-284;(b) W. Jiang, Y. Li, Z.H. Wang, Tailor-made rylene arrays for high performance nchannel semiconductors, Acc. Chem. Res. 47 (2014) 3135-3147.
Y.Z. Lin, Y.Y. Li, X.W. Zhan. Small molecule semiconductors for high-efficiency organic photovoltaics[J]. Chem. Soc. Rev., 2012,41:4245-4272. doi: 10.1039/c2cs15313k
(a) X.K. Gao, Y.B. Hu, Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design, J. Mater. Chem. C 2 (2014)3099-3117;(b) C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow, Adv. Mater. 24 (2012) 613-636.
C.W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48183. doi: 10.1063/1.96937
X.Y. Guo, L.J. Bu, Y. Zhao. Controlled phase separation for efficient energy conversion in dye/polymer blend bulk heterojunction photovoltaic cells[J]. Thin Solid Films, 2009,517:4654-4657. doi: 10.1016/j.tsf.2009.02.082
A. Sharenko, C.M. Proctor, T.S. van der Poll. A high-performing solutionprocessed small molecule:perylene diimide bulk heterojunction solar cell[J]. Adv. Mate, 2013,25:4403-4406. doi: 10.1002/adma.v25.32
Y.X. Chen, X. Zhang, C.L. Zhan, J.N. Yao. In-depth understanding of photocurrent enhancement in solution-processed small-molecule:perylene diimide non-fullerene organic solar cells[J]. Phys. Status Solidi A, 2015,212:1961-1968. doi: 10.1002/pssa.201532102
R. Singh, E. Aluicio-Sarduy, Z. Kan. Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer[J]. J. Mater. Chem. A, 2014,2:14348-14353. doi: 10.1039/C4TA02851A
P.E. Hartnett, A. Timalsina, H.S.S.R. Matte. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics[J]. J. Am. Chem. Soc., 2014,136:16345-16356. doi: 10.1021/ja508814z
Y.H. Cai, L.J. Huo, X.B. Sun. High performance organic solar cells based on a twisted bay-substituted tetraphenyl functionalized perylenediimide electron acceptor[J]. Adv. Energy Mater., 2015,51500032. doi: 10.1002/aenm.201500032
R. Shivanna, S. Shoaee, S. Dimitrov. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor[J]. Energy Environ. Sci., 2014,7:435-441. doi: 10.1039/C3EE42484G
L. Ye, K. Sun, W. Jiang. Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials[J]. ACS Appl. Mater. Interfaces, 2015,7:9274-9280. doi: 10.1021/acsami.5b02012
X. Zhang, Z.H. Lu, L. Ye. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency[J]. Adv. Mater, 2013,25:5791-5797. doi: 10.1002/adma.v25.40
X. Zhang, C.L. Zhan, J.N. Yao. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process[J]. Chem. Mater., 2015,27:166-173. doi: 10.1021/cm504140c
X. Zhang, J.N. Yao, C.L. Zhan. A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor[J]. Chem. Commun, 2015,51:1058-1061. doi: 10.1039/C4CC08457H
Z.H. Lu, B. Jiang, X. Zhang. Perylene-diimide based non-fullerene solar cells with 4.34% efficiency through engineering surface donor/acceptor compositions[J]. Chem. Mater., 2014,26:2907-2914. doi: 10.1021/cm5006339
Q.F. Yan, Y. Zhou, Y.Q. Zheng, J. Pei, D.H. Zhao. Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives[J]. Chem. Sci., 2013,4:4389-4394. doi: 10.1039/c3sc51841h
J.B. Zhao, Y.K. Li, H.R. Lin. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor[J]. Energy Environ. Sci., 2015,8:520-525. doi: 10.1039/C4EE02990A
Y.F. Li, D.B. Zhu, X.W. Zhan. A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells[J]. Adv. Energy Mater, 2014,41400420. doi: 10.1002/aenm.201400420
W. Jiang, L. Ye, X.G. Li. Bay-linked perylene bisimides as promising nonfullerene acceptors for organic solar cells[J]. Chem. Commun., 2014,50:1024-1026. doi: 10.1039/C3CC47204C
Y. Zang, C.Z. Li, C.C. Chueh. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells[J]. Adv. Mater., 2014,26:5708-5714. doi: 10.1002/adma.201401992
D. Sun, D. Meng, Y.H. Cai. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%[J]. J. Am. Chem. Soc., 2015,137:11156-11162. doi: 10.1021/jacs.5b06414
T. Liu, D. Meng, Y. Cai. High performance of non-fullerene organic cells based on a selenium-containing polymer donor and a twisted perylene bisimide acceptor[J]. Adv. Sci, 20161600117.
D. Meng, D. Sun, C.M. Zhong. High-performance solution-processed nonfullerene organic solar cells based on selenophene-containing perylene bisimide acceptor[J]. J. Am. Chem. Soc., 2016,138:375-380. doi: 10.1021/jacs.5b11149
D.L. Zhao, Q.H. Wu, Z.X. Cai. Electron acceptors based on a-substituted perylene diimide (PDI) for organic solar cells[J]. Chem. Mater., 2016,28:1139-1146. doi: 10.1021/acs.chemmater.5b04570
C.H. Wu, C.C. Chueh, Y.Y. Xi. Influence of molecular geometry of perylene diimide dimers and polymers on bulk heterojunction morphology toward highperformance nonfullerene polymer solar cells[J]. Adv. Funct. Mater., 2015,25:5326-5332. doi: 10.1002/adfm.201501971
(a) Y. Zhong, M.T. Trinh, R.S. Chen, et al., Efficient organic solar cells with helical perylene diimide electron acceptors, J. Am. Chem. Soc. 136 (2014) 15215-15221; (b) Y. Zhong, M.T. Trinh, R.S. Chen, et al., Molecular helices as electron acceptors H.-W. Luo, Z.-T. Liu / Chinese Chemical Letters 27 (2016) 1283-1292 1291 in high-performance bulk heterojunction solar cells, Nat. Commun. 6 (2015) 8242.
P.E. Hartnett, H.S.S.R. Matte, N.D. Eastham. Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors[J]. Chem. Sci, 2016:3543-3555.
Y.Z. Lin, Y.F. Wang, J.Y. Wang. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells[J]. Adv. Mater, 2014,26:5137-5142. doi: 10.1002/adma.201400525
Y.H. Liu, C. Mu, K. Jiang. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells[J]. Adv. Mate, 2015,27:1015-1020. doi: 10.1002/adma.201404152
Y.H. Liu, J.Y.L. Lai, S.S. Chen. Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors[J]. J. Mater. Chem. A, 2015,3:13632-13636. doi: 10.1039/C5TA03093E
(a) W.Q. Chen, X. Yang, G.K. Long, et al., A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells, J. Mater. Chem. C3 (2015) 4698-4705; (b) Q. Wu, D. Zhao, A.M. Schneider, W. Chen, L. Yu, Covalently bound clusters of alpha-substituted PDI-rival electron acceptors to fullerene for organic solar cells, J. Am. Chem. Soc. (2016) 7248-7251.
E. Ahmed, G.Q. Ren, F.S. Kim, E.C. Hollenbeck, S.A. Jenekhe. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides[J]. Chem. Mater., 2011,23:4563-4577. doi: 10.1021/cm2019668
Z.H. Mao, T.P. Le, K. Vakhshouri. Processing additive suppresses phase separation in the active layer of organic photovoltaics based on naphthalene diimide[J]. Org. Electron., 2014,15:3384-3391. doi: 10.1016/j.orgel.2014.09.021
H. Patil, A. Gupta, A. Bilic, S.V. Bhosale, S.V. Bhosale. A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells[J]. Tetrahedron Lett, 2014,55:4430-4432. doi: 10.1016/j.tetlet.2014.06.017
X. Wang, J.H. Huang, Z.X. Niu. Dimeric naphthalene diimide based small molecule acceptors: synthesis, characterization, and photovoltaic properties[J]. Tetrahedron, 2014,70:4726-4731. doi: 10.1016/j.tet.2014.05.058
A. Gupta, R.V. Hangarge, X.Z. Wang. Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells[J]. Dyes Pigm., 2015,120:314-321. doi: 10.1016/j.dyepig.2015.04.033
Y. Liu, L. Zhang, H. Lee. NDI-based small molecule as promising nonfullerene acceptor for solution-processed organic photovoltaics[J]. Adv. Energy Mater, 2015,51500195. doi: 10.1002/aenm.201500195
H.Y. Li, F.S. Kim, G.Q. Ren. Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors[J]. Angew. Chem. Int. Ed., 2013,52:5513-5517. doi: 10.1002/anie.201210085
H.Y.Li, T.Earmme, G.Q.Ren, etal.. Beyondfullerenes:designofnonfullereneacceptors for efficient organic photovoltaics[J]. J. Am. Chem. Soc., 2014,136:14589-14597. doi: 10.1021/ja508472j
H.Y. Li, Y.J. Hwang, B.A.E. Courtright. Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells[J]. Adv. Mater., 2015,27:3266-3272. doi: 10.1002/adma.v27.21
H.Y. Li, T. Earmme, S. Subramaniyan, S.A. Jenekhe. Bis(naphthalene imide)diphenylanthrazolines: a new class of electron acceptors for efficient nonfullerene organic solar cells and applicable to multiple donor polymers[J]. Adv. Energy Mater., 2015,51402041. doi: 10.1002/aenm.201402041
J.T. Bloking, X. Han, A.T. Higgs. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors[J]. Chem. Mater., 2011,23:5484-5490. doi: 10.1021/cm203111k
J.D. Douglas, M.S. Chen, J.R. Niskala. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials[J]. Adv. Mater., 2014,26:4313-4319. doi: 10.1002/adma.v26.25
S. Jinnai, Y. Ie, M. Karakawa. Electron-accepting π-conjugated systems for organic photovoltaics: influence of structural modification on molecular orientation at donor-acceptor interfaces[J]. Chem. Mater., 2016,28:1705-1713. doi: 10.1021/acs.chemmater.5b04551
O.K. Kwon, J.H. Park, S.K. Park, S.Y. Park. Soluble dicyanodistyrylbenzene-based non-fullerene electron acceptors with optimized aggregation behavior for highefficiency organic solar cells[J]. Adv. Energy Mater., 2015,51400929. doi: 10.1002/aenm.201400929
O.K., J.H.Park, D.W.Kim, S.K.Park, S.Y.Park. An all-small-moleculeorganicsolar cell with high efficiency nonfullerene acceptor[J]. Adv. Mater., 2015,27:1951-1956. doi: 10.1002/adma.v27.11
S. Chatterjee, Y. Ie, M. Karakawa, Y. Aso. Naphtho[J]. Adv. Funct. Mater., 2016,26:1161-1168. doi: 10.1002/adfm.v26.8
(a) C. Cabanetos, A.E. Labban, J.A. Bartelt, et al., Linear side chains in benzo[1, 2-b:4, 5-b0]dithiophene-thieno[3, 4-c]pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance, J. Am. Chem. Soc. 135 (2013) 4656-4659; (b) A.T. Yiu, P.M. Beaujuge, O.P. Lee, et al., Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient dolar cells, J. Am. Chem. Soc. 134 (2012) 2180-2185; (c) J.J. Yao, C.M. Yu, Z.T. Liu, et al., Significant improvement of semiconducting performance of the diketopyrrolopyrrole-quaterthiophene conjugated polymer through side-chain engineering via hydrogen-bonding, J. Am. Chem. Soc. 138 (2016) 173-185.
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
Wen-Bo Wei , Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Qian Wang , Yeping Bian , Gagan Dhawan , Wei Zhang , Alexander E. Sorochinsky , Ata Makarem , Vadim A. Soloshonok , Jianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855