Citation: Jun-Sheng Luo, Zhong-Quan Wan, Chun-Yang Jia. Recent advances in phenothiazine-based dyes for dye-sensitized solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1304-1318. doi: 10.1016/j.cclet.2016.07.002 shu

Recent advances in phenothiazine-based dyes for dye-sensitized solar cells

  • Corresponding author: Chun-Yang Jia, cyjia@uestc.edu.cn
  • Received Date: 29 April 2016
    Revised Date: 14 June 2016
    Accepted Date: 21 June 2016
    Available Online: 27 August 2016

Figures(13)

  • Dye-sensitized solar cells (DSSCs) have attracted significant attention as alternatives to conventional silicon-based solar cells owing to their low-cost production, facile fabrication, excellent stability and high power conversion efficiency (PCE). The dye molecule is one of the key components in DSSCs since it significant influence on the PCE, charge separation, light-harvesting, as well as the device stability. Among various dyes, easily tunable phenothiazine-based dyes hold a large proportion and achieve impressive photovoltaic performances. This class of dyes not only has superiorly non-planar butterfly structure but also possesses excellent electron donating ability and large π conjugated system. This review summarized recent developments in the phenothiazine dyes, including small molecule phenothiazine dyes, polymer phenothiazine dyes and phenothiazine dyes for co-sensitization, especially focused on the developments and design concepts of small molecule phenothiazine dyes, as well as the correlation between molecular structures and the photovoltaic performances.
  • 加载中
    1. [1]

      B. O'Regan, M. Grätzel. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films[J]. Nature, 1991,353:737-740. doi: 10.1038/353737a0

    2. [2]

      M. Grätzel. Recent advances in sensitized mesoscopic solar cells[J]. Acc. Chem. Res., 2009,42:1788-1798. doi: 10.1021/ar900141y

    3. [3]

      A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson. Dye-sensitized solar cells[J]. Chem. Rev., 2010,110:6595-6663. doi: 10.1021/cr900356p

    4. [4]

      A. Kojima, K. Teshima, Y. Shirai. Organometal halide perovskites as visiblelight sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    5. [5]

      H.S. Kim, C.R. Lee, J.H. Im. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2591.  

    6. [6]

      H.P. Zhou, Q. Chen, G. Li. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050

    7. [7]

      G.D. Niu, X.D. Guo, L.D. Wang. Review of recent progress in chemical stability of perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:8970-8980. doi: 10.1039/C4TA04994B

    8. [8]

      S.F. Zhang, X.D. Yang, Y. Numata. Highly efficient dye-sensitized solar cells: progress and future challenges[J]. Energy Environ. Sci., 2013,6:1443-1464. doi: 10.1039/c3ee24453a

    9. [9]

      A. Mishra, M.K.R. Fischer, P. Bauerle. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules[J]. Angew. Chem. Int. Ed., 2009,48:2474-2499. doi: 10.1002/anie.v48:14

    10. [10]

      A. Hagfeldt, M. Gräetzel. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995,95:49-68. doi: 10.1021/cr00033a003

    11. [11]

      S. Mathew, A. Yella, P. Gao. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014,6:242-247. doi: 10.1038/nchem.1861

    12. [12]

      C.Y. Chen, M. Wang, J.Y. Li. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells[J]. ACS Nano, 2009,3:3103-3109. doi: 10.1021/nn900756s

    13. [13]

      Z.Y. Yao, M. Zhang, H. Wu. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2015,137:3799-3802. doi: 10.1021/jacs.5b01537

    14. [14]

      I. Stengel, N. Pootrakulchote, R.R. Dykeman. Click-functionalized Ru(II) complexes for dye-sensitized solar cells[J]. Adv. Energy Mater., 2012,2:1004-1012. doi: 10.1002/aenm.v2.8

    15. [15]

      C.Y. Chen, N. Pootrakulchote, T.H. Hung. Ruthenium sensitizer with thienothiophene-linked carbazole antennas in conjunction with liquid electrolytes for dye-sensitized solar cells[J]. J. Phys. Chem. C, 2011,115:20043-20050. doi: 10.1021/jp206312g

    16. [16]

      S.M. Feldt, E.A. Gibson, E. Gabrielsson. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2010,132:16714-16724. doi: 10.1021/ja1088869

    17. [17]

      C.Y. Chen, J.G. Chen, S.J. Wu. Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2008,47:7342-7345. doi: 10.1002/anie.v47:38

    18. [18]

      Y.S. Yen, H.H. Chou, Y.C. Chen. Recent developments in molecule-based organic materials for dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:8734-8747. doi: 10.1039/c2jm30362k

    19. [19]

      T.W. Hamann, R.A. Jensen, A.B.F. Martinson. Advancing beyond current generation dye-sensitized solar cells[J]. Energy Environ. Sci., 2008,1:66-78. doi: 10.1039/b809672d

    20. [20]

      Z.J. Ning, Y. Fu, H. Tian. Improvement of dye-sensitized solar cells: what we know and what we need to know[J]. Energy Environ. Sci., 2010,3:1170-1181. doi: 10.1039/c003841e

    21. [21]

      M. Zhang, Y.L. Wang, M.F. Xu. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophenebenzothiadiazole[J]. Energy Environ. Sci., 2013,6:2944-2949. doi: 10.1039/c3ee42331j

    22. [22]

      B. Xu, E. Sheibani, P. Liu. Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells[J]. Adv. Mater., 2014,26:6629-6634. doi: 10.1002/adma.v26.38

    23. [23]

      H.N. Tian, X.C. Yang, R.K. Chen. Phenothiazine derivatives for efficient organic dye-sensitized solar cells[J]. Chem. Commun, 2007:3741-3743.  

    24. [24]

      D. Joly, L. Pellejà, S. Narbey. Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency[J]. Energy Environ. Sci., 2015,8:2010-2018. doi: 10.1039/C5EE00444F

    25. [25]

      N. Cai, Y.L. Wang, M.F. Xu. Engineering of push-pull thiophene dyes to enhance light absorption and modulate charge recombination in mesoscopic solar cells[J]. Adv. Funct. Mater., 2013,23:1846-1854. doi: 10.1002/adfm.v23.14

    26. [26]

      Z.F. Chai, M. Wu, M.M. Fang. Similar or totally different: the adjustment of the twist conformation through minor structural modification, and dramatically improved performance for dye-sensitized solar cell[J]. Adv. Energy Mater., 2015,51500846. doi: 10.1002/aenm.201500846

    27. [27]

      A.Scrascia, L.DeMarco, S.Laricchia, etal.. Fluorine-thiophene-substitutedorganic dyes for dye sensitized solar cells[J]. J. Mater. Chem. A, 2013,1:11909-11921. doi: 10.1039/c3ta10423k

    28. [28]

      H.Y. Li, Y.Z. Yang, Y.Q. Hou. Organic sensitizers featuring 9, 10-diarylsubstituted anthracene unit[J]. ACS Sustain. Chem. Eng., 2014,2:1776-1784. doi: 10.1021/sc500234a

    29. [29]

      Q.Q. Li, J. Shi, H.Y. Li. Novel pyrrole-based dyes for dye-sensitized solar cells: from rod-shape to "H" type[J]. J. Mater. Chem., 2012,22:6689-6696. doi: 10.1039/c2jm30200d

    30. [30]

      Z.Q. Wan, C.Y. Jia, Y.D. Duan. Novel organic sensitizers containing dithiafulvenyl units as additional donors for efficient dye-sensitized solar cells[J]. RSC Adv., 2014,4:34896-34903. doi: 10.1039/C4RA04782F

    31. [31]

      P.A. Bouit, M. Marszalek, R. Humphry-Baker. Donor-p-acceptors containing the 10-(1, 3-dithiol-2-ylidene)anthracene unit for dye-sensitized solar cells[J]. Chem. Eur. J., 2012,18:11621-11629. doi: 10.1002/chem.201201022

    32. [32]

      K.P. Guo, K.Y. Yan, X.Q. Lu. Dithiafulvenyl unit as a new donor for highefficiency dye-sensitized solar cells: synthesis and demonstration of a family of metal-free organic sensitizers[J]. Org. Lett., 2012,14:2214-2217. doi: 10.1021/ol300477b

    33. [33]

      Z.Q. Wan, C.Y. Jia, Y.D. Duan. Novel organic dye employing dithiafulvenylsubstituted arylamine hybrid donor unit for dye-sensitized solar cells[J]. Org. Electron., 2013,14:2132-2138. doi: 10.1016/j.orgel.2013.05.011

    34. [34]

      R.K. Chen, X.C. Yang, H.N. Tian. Effect of tetrahydroquinoline dyes structure on the performance of organic dye-sensitized solar cells[J]. Chem. Mater., 2007,19:4007-4015. doi: 10.1021/cm070617g

    35. [35]

      Y. Hao, X.C. Yang, J.Y. Cong. Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells[J]. Tetrahedron, 2012,68:552-558. doi: 10.1016/j.tet.2011.11.004

    36. [36]

      N. Koumura, Z.S. Wang, S. Mori. Alkyl-functionalized organic dyes for efficient molecular photovoltaics[J]. J. Am. Chem. Soc., 2006,128:14256-14257. doi: 10.1021/ja0645640

    37. [37]

      Y.Q. Wang, B. Chen, W.J. Wu. Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization[J]. Angew. Chem. Int. Ed., 2014,53:10779-10783. doi: 10.1002/anie.201406190

    38. [38]

      A. Venkateswararao, K.R.J. Thomas, C.T. Li. Functional tuning of organic dyes containing 2, 7-carbazole and other electron-rich segments in the conjugation pathway[J]. RSC Adv., 2015,5:17953-17966. doi: 10.1039/C4RA15234D

    39. [39]

      A. Venkateswararao, K.R.J. Thomas, C.P. Lee. Organic dyes containing carbazole as donor and p-linker: optical, electrochemical, and photovoltaic properties[J]. ACS Appl. Mater. Interfaces, 2014,6:2528-2539. doi: 10.1021/am404948w

    40. [40]

      B. Liu, W.Q. Li, B. Wang. Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells: electron injection, impedance and charge recombination[J]. J. Power Sources, 2013,234:139-146. doi: 10.1016/j.jpowsour.2013.01.152

    41. [41]

      G. Li, M. Liang, H. Wang. Significant enhancement of open-circuit voltage in indoline-based dye-sensitized solar cells via retarding charge recombination[J]. Chem. Mater., 2013,25:1713-1722. doi: 10.1021/cm400196w

    42. [42]

      S. Higashijima, Y. Inoue, H. Miura. Organic dyes containing fluorenesubstituted indoline core for zinc oxide dye-sensitized solar cell[J]. RSC Adv., 2012,2:2721-2724. doi: 10.1039/c2ra01358d

    43. [43]

      J.B. Yang, P. Ganesan, J. Teuscher. Influence of the donor size in D-p-A organic dyes for dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2014,136:5722-5730. doi: 10.1021/ja500280r

    44. [44]

      R.Y. Lin, F.L. Wu, C.T. Li. High-performance aqueous/organic dye-sensitized solar cells based on sensitizers containing triethylene oxide methyl ether[J]. ChemSusChem, 2015,8:2503-2513. doi: 10.1002/cssc.201500589

    45. [45]

      Y. Hua, S. Chang, D.D. Huang. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes[J]. Chem. Mater., 2013,25:2146-2153. doi: 10.1021/cm400800h

    46. [46]

      S.H. Kim, H.W. Kim, C. Sakong. Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells[J]. Org. Lett., 2011,13:5784-5787. doi: 10.1021/ol2023517

    47. [47]

      M.H. Tsao, T.Y. Wu, H.P. Wang. An efficient metal-free sensitizer for dyesensitized solar cells[J]. Mater. Lett., 2011,65:583-586. doi: 10.1016/j.matlet.2010.10.072

    48. [48]

      G.B. Bodedla, K.R.J. Thomas, C.T. Li, K.C. Ho. Functional tuning of phenothiazinebased dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies[J]. RSC Adv., 2014,4:53588-53601. doi: 10.1039/C4RA09300C

    49. [49]

      X.X. Liu, J. Long, G. Wang. Effect of structural modification on the performances of phenothiazine-dye sensitized solar cells[J]. Dyes Pigm., 2015,121:118-127. doi: 10.1016/j.dyepig.2015.05.012

    50. [50]

      H.N. Tian, X.C. Yang, J.Y. Cong. Effect of different electron donating groups on the performance of dye-sensitized solar cells[J]. Dyes Pigm., 2010,84:62-68. doi: 10.1016/j.dyepig.2009.06.014

    51. [51]

      K.H. Kim, S.M. Lee, M.H. Seo. Syntheses of organic dyes based on phenothiazine as photosensitizers and effects of their π-conjugated bridges on the photovoltaic performances of dye-sensitized solar cells[J]. Macromol. Res., 2012,20:128-137. doi: 10.1007/s13233-012-0017-2

    52. [52]

      M. Marszalek, S. Nagane, A. Ichake. Structural variations of D-π-A dyes influence on the photovoltaic performance of dye-sensitized solar cells[J]. RSC Adv., 2013,3:7921-7924. doi: 10.1039/c3ra22249g

    53. [53]

      J.H. Zhao, X.C. Yang, M. Cheng, S.F. Li, L.C. Sun. New organic dyes with a phenanthrenequinone derivative as the p-conjugated bridge for dye-sensitized solar cells[J]. J. Phys. Chem. C, 2013,117:12936-12941. doi: 10.1021/jp400011w

    54. [54]

      Y. Wang, Z.Q. Wan, C.Y. Jia. Indole-based organic dyes with different electron donors for dye-sensitized solar cells[J]. Synth. Met., 2016,211:40-48. doi: 10.1016/j.synthmet.2015.10.024

    55. [55]

      A. Baheti, K.R.J. Thomas, C.T. Li. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dyesensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:2249-2262. doi: 10.1021/am506149q

    56. [56]

      Z.S. Huang, H.L. Feng, X.F. Zang. Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells[J]. J. Mater. Chem. A, 2014,2:15365-15376. doi: 10.1039/C4TA02639J

    57. [57]

      Z.S. Huang, C. Cai, X.F. Zang. Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs[J]. J. Mater. Chem. A, 2015,3:1333-1344. doi: 10.1039/C4TA05652C

    58. [58]

      J.S. Ni, J.H. You, W.I. Hung. Organic dyes incorporating the dithieno[J]. ACS Appl. Mater. Interfaces, 2014,6:22612-22621. doi: 10.1021/am5067145

    59. [59]

      X.F. Zang, Z.S. Huang, H.L. Wu. Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells[J]. J. Power Sources, 2014,271:455-464. doi: 10.1016/j.jpowsour.2014.08.030

    60. [60]

      M. Mao, X.L. Zhang, X.Q. Fang. Highly efficient light-harvesting boradiazaindacene sensitizers for dye-sensitized solar cells featuring phenothiazine donor antenna[J]. J. Power Sources, 2014,268:965-976. doi: 10.1016/j.jpowsour.2014.05.079

    61. [61]

      M. Mao, X.L. Zhang, X.Q. Fang. 2, 6-Conjugated bodipy sensitizers for highperformance dye-sensitized solar cells[J]. Org. Electron, 2014,15:2079-2090. doi: 10.1016/j.orgel.2014.05.024

    62. [62]

      R.Y.Y. Lin, T.M. Chuang, F.L. Wu. Anthracene/phenothiazine π-conjugated sensitizers for dye-sensitized solar cells using redox mediator in organic and water-based solvents[J]. ChemSusChem, 2015,8:105-113. doi: 10.1002/cssc.201403016

    63. [63]

      S. Kumar, K.R.J. Thomas, C.T. Li. Synthesis and photovoltaic properties of organic dyes containing N-fluoren-2-yl dithieno[J]. Org. Electron., 2015,26:109-116. doi: 10.1016/j.orgel.2015.07.019

    64. [64]

      Y.J. Chang, P.T. Chou, Y.Z. Lin. Organic dyes containing oligo-phenothiazine for dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:21704-21712. doi: 10.1039/c2jm35556f

    65. [65]

      Z. Iqbal, W.Q.Wu , H. Zhang. Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance[J]. Dyes Pigm., 2013,99:299-307. doi: 10.1016/j.dyepig.2013.05.032

    66. [66]

      M. Cheng, X.C. Yang, C. Chen. Effect of the acceptor on the performance of dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2013,15:17452-17459. doi: 10.1039/c3cp52314d

    67. [67]

      Y. Hua, S. Chang, J. He. Molecular engineering of simple phenothiazinebased dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells[J]. Chem. Eur. J., 2014,20:6300-6308. doi: 10.1002/chem.201304897

    68. [68]

      Z.Q. Wan, C.Y. Jia, Y. Wang. Significant improvement of phenothiazine organic dye-sensitized solar cell performance using dithiafulvenyl unit as additional donor[J]. Org. Electron., 2015,27:107-113. doi: 10.1016/j.orgel.2015.09.009

    69. [69]

      S.B. Wang, H.R. Wang, J.C. Guo. Influence of the terminal electron donor in D-D-π-A phenothiazine dyes for dye-sensitized solar cells[J]. Dyes Pigm., 2014,109:96-104. doi: 10.1016/j.dyepig.2014.05.015

    70. [70]

      Y. Hua, S. Chang, H.D. Wang. New phenothiazine-based dyes for efficient dye-sensitized solar cells: positioning effect of a donor group on the cell performance[J]. J. Power Sources, 2013,243:253-259. doi: 10.1016/j.jpowsour.2013.05.157

    71. [71]

      C.J. Yang, Y.J. Chang, M. Watanabe. Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:4040-4049. doi: 10.1039/c2jm13961h

    72. [72]

      Y. Hua, L.T.L. Lee, C.S. Zhang. Co-sensitization of 3D bulky phenothiazinecored photosensitizers with planar squaraine dyes for efficient dye-sensitized solar cells[J]. J. Mater. Chem. A, 2015,3:13848-13855. doi: 10.1039/C5TA01665G

    73. [73]

      M.J. Kim, Y.J. Yu, J.H. Kim. Tuning of spacer groups in organic dyes for efficient inhibition of charge recombination in dye-sensitized solar cells[J]. Dyes Pigm., 2012,95:134-141. doi: 10.1016/j.dyepig.2012.04.002

    74. [74]

      C.V. Kumar, D. Raptis, E.N. Koukaras. Study of an indoline-phenothiazine based organic dye for dye-sensitized solar cells. Theoretical calculations and experimental data[J]. Org. Electron., 2015,25:66-73. doi: 10.1016/j.orgel.2015.06.009

    75. [75]

      C.J. Chen, J.Y. Liao, Z.G. Chi. Effect of polyphenyl-substituted ethylene endcapped groups in metal-free organic dyes on performance ofdye-sensitized solar cells[J]. RSC Adv., 2012,2:7788-7797. doi: 10.1039/c2ra20819a

    76. [76]

      A. Amacher, C.Y. Yi, J.B. Yang. A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cell[J]. Chem. Commun, 2014,50:6540-6542. doi: 10.1039/C4CC02696A

    77. [77]

      S. Wenger, P.A. Bouit, Q.L. Chen. Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells[J]. J. Am. Chem. Soc., 2010,132:5164-5169. doi: 10.1021/ja909291h

    78. [78]

      C.A. Echeverry, M.Á. Herranz, A. Ortiz. Rhodanine-3-acetic acid and pextended tetrathiafulvalene (exTTF) based systems for dye-sensitized solar cells[J]. New J. Chem., 2014,38:5801-5807. doi: 10.1039/C4NJ01261E

    79. [79]

      Y. Geng, F. Pop, C.Y. Yi. Electronic tuning effects via π-linkers in tetrathiafulvalene-based dyes[J]. New J. Chem., 2014,38:3269-3274. doi: 10.1039/c4nj00428k

    80. [80]

      M. Marszalek, S. Nagane, A. Ichake. Tuning spectral properties of phenothiazine based donor-p-acceptor dyes for efficient dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:889-894. doi: 10.1039/C1JM14024H

    81. [81]

      X. Yang, J. Zhao, L. Wang. Phenothiazine derivatives-based D-p-A and D-A-p-A organic dyes for dye-sensitized solar cells[J]. RSC Adv., 2014,4:24377-24383. doi: 10.1039/c4ra01858c

    82. [82]

      M. Cheng, X.C. Yang, F.G. Zhang. Tuning the HOMO and LUMO energy levels of organic dyes with N-carboxomethylpyridinium as acceptor to optimize the efficiency of dye-sensitized solar cells[J]. J. Phys. Chem. C, 2013,117:9076-9083.  

    83. [83]

      S.H. Bae, K.D. Seo, W.S. Choi. Near-IR organic sensitizers containing squaraine and phenothiazine units for dye-sensitized solar cells[J]. Dyes Pigm., 2015,113:18-26. doi: 10.1016/j.dyepig.2014.07.031

    84. [84]

      W.J. Wu, J.B. Yang, J.L. Hua. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units[J]. J. Mater. Chem., 2010,20:1772-1779. doi: 10.1039/b918282a

    85. [85]

      W.I. Hung, Y.Y. Liao, C.Y. Hsu. High-performance dye-sensitized solar cells based on phenothiazine dyes containing double anchors and thiophene spacers[J]. Chem. Asian J., 2014,9:357-366. doi: 10.1002/asia.201301228

    86. [86]

      Y.S. Yang, H.D. Kim, J.H. Ryu. Effects of anchoring groups in multianchoring organic dyes with thiophene bridge for dye-sensitized solar cells[J]. Synth. Met., 2011,161:850-855. doi: 10.1016/j.synthmet.2011.02.012

    87. [87]

      M. Mao, X.L. Zhang, L. Cao. Design of bodipy based organic dyes for highefficient dye-sensitized solar cells employing double electron acceptors[J]. Dyes Pigm., 2015,117:28-36. doi: 10.1016/j.dyepig.2015.02.001

    88. [88]

      D.R. Cao, J.A. Peng, Y.P. Hong. Enhanced performance of the dye-sensitized solar cells with phenothiazine-based dyes containing double D-A branches[J]. Org. Lett., 2011,13:1610-1613. doi: 10.1021/ol2000167

    89. [89]

      X.F. Zang, T.L. Zhang, Z.S. Huang. Impact of the position isomer of the linkage in the double D-A branch-based organic dyes on the photovoltaic performance[J]. Dyes Pigm., 2014,104:89-96. doi: 10.1016/j.dyepig.2013.12.028

    90. [90]

      S.H. Kim, C. Sakong, J.B. Chang. The effect of N-substitution and ethylthio substitution on the performance of phenothiazine donors in dye-sensitized solar cells[J]. Dyes Pigm., 2013,97:262-271. doi: 10.1016/j.dyepig.2012.12.007

    91. [91]

      Z. Iqbal, W.Q. Wu, D.B. Kuang. Phenothiazine-based dyes with bilateral extension of π-conjugation for efficient dye-sensitized solar cells[J]. Dyes Pigm., 2013,96:722-731. doi: 10.1016/j.dyepig.2012.11.010

    92. [92]

      Z. Iqbal, W.Q. Wu, H. Zhang. Influence of spatial arrangements of π-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells[J]. Org. Electron., 2013,14:2662-2672. doi: 10.1016/j.orgel.2013.07.007

    93. [93]

      Z. Iqbal, W.Q. Wu, Z.S. Huang. Trilateral π-conjugation extensions of phenothiazine-based dyes enhance the photovoltaic performance of the dyesensitized solar cells[J]. Dyes Pigm., 2016,124:63-71. doi: 10.1016/j.dyepig.2015.09.001

    94. [94]

      W.I. Hung, Y.Y. Liao, T.H. Lee. Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells[J]. Chem. Commun., 2015,51:2152-2155. doi: 10.1039/C4CC09294E

    95. [95]

      H.J. Jo, J.E. Nam, D.H. Kim. A comparison of the electronic and photovoltaic properties of novel twin-anchoring organic dyes containing varying lengths of π-bridges in dye-sensitized solar cells[J]. Dyes Pigm, 2014,102:285-292. doi: 10.1016/j.dyepig.2013.10.032

    96. [96]

      Z.Q. Wan, C.Y. Jia, Y.D. Duan. Phenothiazine-triphenylamine based organic dyes containing various conjugated linkers for efficient dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:25140-25147. doi: 10.1039/c2jm34682f

    97. [97]

      Z.J. She, Y.Y. Cheng, L.Q. Zhang. Novel ruthenium sensitizers with a phenothiazine conjugated bipyridyl ligand for high-efficiency dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:27831-27837. doi: 10.1021/acsami.5b09160

    98. [98]

      Z.Q. Wan, C.Y. Jia, Y.D. Duan. Effects of different acceptors in phenothiazine-triphenylamine dyes on the optical, electrochemical, and photovoltaic properties[J]. Dyes Pigm., 2012,94:150-155. doi: 10.1016/j.dyepig.2011.12.009

    99. [99]

      K.D. Seo, I.T. Choi, H.K. Kim. D-π-A organic dyes with various bulky amine-typed donor moieties for dye-sensitized solar cells employing the cobalt electrolyte[J]. Org. Electron, 2015,25:1-5. doi: 10.1016/j.orgel.2015.06.011

    100. [100]

      J.H. Jia, K.Y. Cao, P.C. Xue. Y-shaped dyes based on triphenylamine for efficient dye-sensitized solar cells[J]. Tetrahedron, 2012,68:3626-3632. doi: 10.1016/j.tet.2012.02.077

    101. [101]

      X.X. Dai, H.L. Feng, W.J. Chen. Synthesis and photovoltaic performance of asymmetric di-anchoring organic dyes[J]. Dyes Pigm., 2015,122:13-21. doi: 10.1016/j.dyepig.2015.06.004

    102. [102]

      Z.B. Xie, A. Midya, K.P. Loh. Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes[J]. Prog. Photovolt.: Res. Appl., 2010,18:573-581. doi: 10.1002/pip.v18:8

    103. [103]

      C.Y. Jung, C.J. Song, W. Yao. Synthesis and performance of new quinoxalinebased dyes for dye sensitized solar cell[J]. Dyes Pigm., 2015,121:204-210. doi: 10.1016/j.dyepig.2015.05.019

    104. [104]

      C.J. Chen, J.Y. Liao, Z.G. Chi. Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole[J]. J. Mater. Chem., 2012,22:8994-9005. doi: 10.1039/c2jm30254c

    105. [105]

      M.J. Cho, S.S. Park, Y.S. Yang. Molecular design of donor-acceptor-type cruciform dyes for efficient dyes-sensitized solar cells[J]. Synth. Met., 2010,160:1754-1760. doi: 10.1016/j.synthmet.2010.06.013

    106. [106]

      T.N. Duan, K. Fan, C. Zhong. Synthesis and photovoltaic property of new kind of organic dyes containing 2, 2'-bithiophene unit with three electrondonors[J]. J. Photochem. Photobiol. A: Chem., 2014,278:39-45. doi: 10.1016/j.jphotochem.2013.12.019

    107. [107]

      X.X. Dai, H.L. Feng, Z.S. Huang. Synthesis of phenothiazine-based dianchoring dyes containing fluorene linker and their photovoltaic performance[J]. Dyes Pigm., 2015,114:47-54. doi: 10.1016/j.dyepig.2014.10.016

    108. [108]

      G. Marotta, M.A. Reddy, S.P. Singh. Novel carbazole-phenothiazine dyads for dye-sensitized solar cells: a combined experimental and theoretical study[J]. ACS Appl. Mater. Interfaces, 2013,5:9635-9647. doi: 10.1021/am402675q

    109. [109]

      K.S.V. Gupta, J. Zhang, G. Marotta. Effect of the anchoring group in the performance of carbazole-phenothiazine dyads for dye-sensitized solar cells[J]. Dyes Pigm., 2015,113:536-545. doi: 10.1016/j.dyepig.2014.09.032

    110. [110]

      B.C. Jeon, M.S. Kim, M.J. Cho. Effect of solvent on dye-adsorption process and photovoltaic properties of dendritic organic dye on TiO2 electrode of dyesensitized solar cells[J]. Synth. Met., 2014,188:130-135. doi: 10.1016/j.synthmet.2013.12.006

    111. [111]

      M. Chandrasekharam, G. Rajkumar, C.S. Rao. Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell[J]. Synth. Met., 2011,161:1469-1476. doi: 10.1016/j.synthmet.2011.04.001

    112. [112]

      Y.S. Xie, Y.Y. Tang, W.J. Wu. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte[J]. J. Am. Chem. Soc., 2015,137:14055-14058. doi: 10.1021/jacs.5b09665

    113. [113]

      Q.F. Xie, J. Zhou, J.M. Hu. Synthesis and photovoltaic properties of branched chain polymeric metal complexes containing phenothiazine and thiophene derivative for dye-sensitized solar cells[J]. J. Chem. Sci., 2015,127:395-403. doi: 10.1007/s12039-015-0790-5

    114. [114]

      G. Wang, Y.Y. Wu, W.H. Ding. Photovoltaic performance of long-chain poly(triphenylamine-phenothiazine) dyes with a tunable π-bridge for dyesensitized solar cells[J]. J. Mater. Chem. A, 2015,3:14217-14227. doi: 10.1039/C5TA03425F

    115. [115]

      H.J. Tan, C.Y. Pan, G. Wang. Synthesis and characterization of conjugated polymers with main-chain donors and pendent acceptors for dye-sensitized solar cells[J]. RSC Adv., 2013,3:16612-16618. doi: 10.1039/c3ra42161a

    116. [116]

      S. Chang, H.D. Wang, Y. Hua. Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells[J]. J. Mater. Chem. A, 2013,1:11553-11558. doi: 10.1039/c3ta12714a

    117. [117]

      S. Chang, K.Y. Wong, X.D. Xiao. Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells[J]. RSC Adv., 2014,4:31759-31763. doi: 10.1039/C4RA04017A

    118. [118]

      Y.R.Kim, H.S., K.S.Ahn. Enhancedperformanceof dye co-sensitizedsolar cells by panchromatic light harvesting[J]. J. Korean Phys. Soc., 2014,64:904-909. doi: 10.3938/jkps.64.904

    119. [119]

      J.S. Luo, Z.Q. Wan, C.Y. Jia. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells[J]. Electrochim. Acta, 2016,211:364-374. doi: 10.1016/j.electacta.2016.05.175

  • 加载中
    1. [1]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    4. [4]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    5. [5]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    6. [6]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    7. [7]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    10. [10]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    11. [11]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    12. [12]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    13. [13]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    14. [14]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    19. [19]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(9)
  • Abstract views(784)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return