Citation: Leng An-Qin, Tian Yun-Fei, Wang Ming-Xuan, Wu Li, Xu Kai-Lai, Hou Xian-Deng, Zheng Cheng-Bin. A sensitive and compact mercury analyzer by integrating dielectric barrier discharge induced cold vapor generation and optical emission spectrometry[J]. Chinese Chemical Letters, ;2017, 28(2): 189-196. doi: 10.1016/j.cclet.2016.06.056 shu

A sensitive and compact mercury analyzer by integrating dielectric barrier discharge induced cold vapor generation and optical emission spectrometry

  • Corresponding author: Zheng Cheng-Bin, abinscu@scu.edu.cn
  • Received Date: 3 May 2016
    Revised Date: 22 June 2016
    Accepted Date: 27 June 2016
    Available Online: 9 February 2016

Figures(6)

  • An environmentally friendly, low power consuming, sensitive and compact mercury analyzer was developed for the determination of mercury in water samples by integrating a thin film dielectric barrier discharge induced cold vapor reactor and a dielectric barrier discharge optical emission spectrometer into a small polymethyl methacrylate plate (10.5 cm length×8.0 cm width×1.2 cm height). Mercury cold vapor was generated when standard or sample solutions with or without formic acid were introduced to the reactor to form thin film liquid and exposed to microplasma irradiation and subsequently separated from the liquid phase for transport to the microplasma and detection of its atomic emission. Limits of detection of 0.20 μg L-1 and 2.6 μg L-1 were obtained for the proposed system using or not using formic acid, respectively. Compared to the conventional microplasma optical emission spectrometry used for mercury analysis, this system not only retains the good limit of detection amenable to the determination of mercury in real samples, but also reduces power consumption, eliminates the generation of hydrogen and avoids the use of toxic or unstable reductant. Method validation was demonstrated by analysis of a certified reference material of water sample and three real water samples with good spike recoveries (88-102%).
  • 加载中
    1. [1]

      C.H. Lamborg, C.R. Hammerschmidt, K.L. Bowman, et al., A global ocean inventory of anthropogenic mercury based on water column measurements, Nature 512(2014) 65-68.

    2. [2]

      R.K. Zalups, C.C. Bridges. Relationships between the renal handling of DMPS and DMSA and the renal handling of mercury[J]. Chem. Res. Toxicol., 2012,25:1825-1838. doi: 10.1021/tx3001847

    3. [3]

      P.A. Ariya, M. Amyot, A. Dastoor. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces:a review and future directions[J]. Chem. Rev., 2015,115:3760-3802. doi: 10.1021/cr500667e

    4. [4]

      UNEP, Minamata convention on mercury, United Nations Environment Programme, Geneva, Switzerland, 2013.

    5. [5]

      M.T. Peng, Z.A. Li, X.D. Hou, C.B. Zheng. In-atomizer atom trapping on gold nanoparticles for sensitive determination of mercury by flow injection cold vapor generation atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2014,29:367-373. doi: 10.1039/C3JA50286D

    6. [6]

      Y. Gao, Z.M. Shi, Z. Long. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry[J]. Microchem. J., 2012,103:1-14. doi: 10.1016/j.microc.2012.02.001

    7. [7]

      J. Huber, L.E. Heimbürger, J.E. Sonke. Nanogold-decorated silica monoliths as highly efficient solid-phase adsorbent for ultratrace mercury analysis in natural waters[J]. Anal. Chem., 2015,87:11122-11129. doi: 10.1021/acs.analchem.5b03303

    8. [8]

      M. Campanella, A. Onor, S. D'Ulivo, E. Giannarelli. Impact of protein concentration on the determination of thiolic groups of ovalbumin:a size exclusion chromatography-chemical vapor generation-atomic fluorescence spectrometry study via mercury labeling[J]. Anal. Chem., 2014,86:2251-2256. doi: 10.1021/ac4041795

    9. [9]

      D.Y. Deng, S. Zhang, H. Chen. Online solid sampling platform using multiwall carbon nanotube assisted matrix solid phase dispersion for mercury speciation in fish by HPLC-ICP-MS[J]. J. Anal. At. Spectrom., 2015,30:882-887. doi: 10.1039/C4JA00436A

    10. [10]

      H. Wang, B.B. Chen, S.Q. Zhu. Chip-based magnetic solid-phase microextraction online coupled with microHPLC-ICPMS for the determination of mercury species in cells[J]. Anal. Chem., 2016,88:796-802. doi: 10.1021/acs.analchem.5b03130

    11. [11]

      K. Saha, S.S. Agasti, C. Kim, X.N. Li, V.M. Rotello. Gold nanoparticles in chemical and biological sensing[J]. Chem. Rev., 2012,112:2739-2779. doi: 10.1021/cr2001178

    12. [12]

      E.M. Nolan, S.J. Lippard. Tools and tactics for the optical detection of mercuric ion[J]. Chem. Rev., 2008,108:3443-3480. doi: 10.1021/cr068000q

    13. [13]

      H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chem. Soc. Rev., 2012,41:3210-3244. doi: 10.1039/C1CS15245A

    14. [14]

      Y. Liu, E.B. Yang, R. Han, et al., A new rhodamine-based fluorescent chemosensor for mercury in aqueous media, Chin. Chem. Lett. 25(2014) 1065-1068.

    15. [15]

      H.Y. He, Z.L. Zhu, H.T. Zheng. Dielectric barrier discharge micro-plasma emission source for the determination of thimerosal in vaccines by photochemical vapor generation[J]. Microchem. J., 2012,104:7-11. doi: 10.1016/j.microc.2012.03.022

    16. [16]

      Z.L. Zhu, G.C.Y. Chan, S.J. Ray, X.R. Zhang, G.M. Hieftje. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry[J]. Anal. Chem., 2008,80:8622-8627. doi: 10.1021/ac801531j

    17. [17]

      W.S. Abdul-Majeed, J.H.L. Parada, W.B. Zimmerman. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples[J]. Anal. Bioanal. Chem., 2011,401:2713-2722. doi: 10.1007/s00216-011-5118-9

    18. [18]

      Y.L. Yu, Z. Du, M.L. Chen, J.H. Wang. Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry[J]. Angew. Chem. Int. Ed., 2008,47:7909-7912. doi: 10.1002/anie.v47:41

    19. [19]

      V. Červený, M. Horváth, J.A.C. Broekaert. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry[J]. Microchem. J., 2013,107:10-16. doi: 10.1016/j.microc.2012.05.023

    20. [20]

      U. Engel, A.M. Bilgiç, O. Haase, E. Voges, J.A. Broekaert, A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique, Anal. Chem. 72(2000) 193-197.

    21. [21]

      P. Pohl, I.J. Zapata, E. Voges, N.H. Bings, J.A.C. Broekaert. Comparison of the cold vapor generation using NaBH4 and SnCl2 as reducing agents and atomic emission spectrometry for the determination of Hg with a microstrip microwave induced argon plasma exiting from the wafer[J]. Microchim. Acta, 2008,161:175-184. doi: 10.1007/s00604-007-0887-8

    22. [22]

      K. Greda, P. Jamroz, P. Pohl. Coupling of cold vapor generation with an atmospheric pressure glow microdischarge sustained between a miniature flow helium jet and a flowing liquid cathode for the determination of mercury by optical emission spectrometry[J]. J. Anal. At. Spectrom., 2014,29:893-902. doi: 10.1039/c3ja50395j

    23. [23]

      R. Shekhar. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium[J]. Talanta, 2012,93:32-36. doi: 10.1016/j.talanta.2012.02.004

    24. [24]

      M.R. Webb, F.J. Andrade, G.M. Hieftje. Compact glow discharge for the elemental analysis of aqueous samples[J]. Anal. Chem., 2007,79:7899-7905. doi: 10.1021/ac070789x

    25. [25]

      T. Frentiu, A.I. Mihaltan, M. Senila. New method for mercury determination in microwave digested soil samples based on cold vapor capacitively coupled plasma microtorch optical emission spectrometry:comparison with atomic fluorescence spectrometry[J]. Microchem. J., 2013,110:545-552. doi: 10.1016/j.microc.2013.06.009

    26. [26]

      X.M. Jiang, Y. Chen, C.B. Zheng, X.D. Hou. Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry[J]. Anal. Chem., 2014,86:5220-5224. doi: 10.1021/ac500637p

    27. [27]

      S. Zhang, H. Luo, M.T. Peng. Determination of Hg, Fe Ni, and Co by miniaturized optical emission spectrometry integrated with flow injection photochemical vapor generation and point discharge[J]. Anal. Chem., 2015,87:10712-10718. doi: 10.1021/acs.analchem.5b02820

    28. [28]

      Z.A. Li, Q. Tan, X.D. Hou, K.L. Xu, C.B. Zheng. Single drop solution electrode glow discharge for plasma assisted-chemical vapor generation:sensitive detection of zinc and cadmium in limited amounts of samples[J]. Anal. Chem., 2014,86:12093-12099. doi: 10.1021/ac502911p

    29. [29]

      Z.L. Zhu, G.C.Y. Chan, S.J. Ray, X.R. Zhang, G.M. Hieftje. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry[J]. Anal. Chem., 2008,80:7043-7050. doi: 10.1021/ac8011126

    30. [30]

      Z.L. Zhu, Q. He, Q. Shuai, H.T. Zheng, S.H. Hu. Solution cathode glow discharge induced vapor generation of iodine for determination by inductively coupled plasma optical emission spectrometry[J]. J. Anal. At. Spectrom., 2010,25:1390-1394. doi: 10.1039/b927298d

    31. [31]

      X. Wu, W.L. Yang, M.G. Liu, X.D. Hou, C.B. Zheng. Vapor generation in dielectric barrier discharge for sensitive detection of mercury by inductively coupled plasma optical emission spectrometry[J]. J. Anal. At. Spectrom., 2011,26:1204-1209. doi: 10.1039/c1ja10016e

    32. [32]

      Z.L. Zhu, Q.J. Wu, Z.F. Liu. Dielectric barrier discharge for high efficiency plasma-chemical vapor generation of cadmium[J]. Anal. Chem., 2013,85:4150-4156. doi: 10.1021/ac400368h

    33. [33]

      Y. Lin, Y. Yang, Y.X. Li. Ultrasensitive speciation analysis of mercury in rice by headspace solid phase microextraction using porous carbons and gas chromatography-dielectric barrier discharge optical emission spectrometry[J]. Environ. Sci. Technol., 2016,50:2468-2476. doi: 10.1021/acs.est.5b04328

    34. [34]

      C. Richmonds, R.M. Sankaran. Plasma-liquid electrochemistry:rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations[J]. Appl. Phys. Lett., 2008,93131501. doi: 10.1063/1.2988283

    35. [35]

      M. Richmonds, B. Witzke. Electron-transfer reactions at the plasma-liquid interface[J]. J. Am. Chem. Soc., 2011,133:17582-17585. doi: 10.1021/ja207547b

    36. [36]

      M. Witzke, P. Rumbach, D.B. Go, R.M. Sankaran. Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions[J]. J. Phys. D:Appl. Phys., 2012,45442001. doi: 10.1088/0022-3727/45/44/442001

    37. [37]

      C.B. Zheng, R.E. Sturgeon, C. Brophy, X.D. Hou. Versatile thin-film reactor for photochemical vapor generation[J]. Anal. Chem., 2010,82:3086-3093. doi: 10.1021/ac100229k

    38. [38]

      P.Wu,H.Chen,G.L.Cheng,X.D.Hou,Exploringsurfacechemistryofnano-TiO2 for automated speciation analysis of Cr(III) and Cr(VI) in drinking water using flow injection and ET-AAS detection, J. Anal. At. Spectrom. 24(2009) 1098-1104.

  • 加载中
    1. [1]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    4. [4]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    5. [5]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    6. [6]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    9. [9]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    10. [10]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    11. [11]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    12. [12]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    13. [13]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    14. [14]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    15. [15]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    16. [16]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    17. [17]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    18. [18]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    19. [19]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    20. [20]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return