A sensitive and compact mercury analyzer by integrating dielectric barrier discharge induced cold vapor generation and optical emission spectrometry
- Corresponding author: Zheng Cheng-Bin, abinscu@scu.edu.cn
Citation:
Leng An-Qin, Tian Yun-Fei, Wang Ming-Xuan, Wu Li, Xu Kai-Lai, Hou Xian-Deng, Zheng Cheng-Bin. A sensitive and compact mercury analyzer by integrating dielectric barrier discharge induced cold vapor generation and optical emission spectrometry[J]. Chinese Chemical Letters,
;2017, 28(2): 189-196.
doi:
10.1016/j.cclet.2016.06.056
C.H. Lamborg, C.R. Hammerschmidt, K.L. Bowman, et al., A global ocean inventory of anthropogenic mercury based on water column measurements, Nature 512(2014) 65-68.
R.K. Zalups, C.C. Bridges. Relationships between the renal handling of DMPS and DMSA and the renal handling of mercury[J]. Chem. Res. Toxicol., 2012,25:1825-1838. doi: 10.1021/tx3001847
P.A. Ariya, M. Amyot, A. Dastoor. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces:a review and future directions[J]. Chem. Rev., 2015,115:3760-3802. doi: 10.1021/cr500667e
UNEP, Minamata convention on mercury, United Nations Environment Programme, Geneva, Switzerland, 2013.
M.T. Peng, Z.A. Li, X.D. Hou, C.B. Zheng. In-atomizer atom trapping on gold nanoparticles for sensitive determination of mercury by flow injection cold vapor generation atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2014,29:367-373. doi: 10.1039/C3JA50286D
Y. Gao, Z.M. Shi, Z. Long. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry[J]. Microchem. J., 2012,103:1-14. doi: 10.1016/j.microc.2012.02.001
J. Huber, L.E. Heimbürger, J.E. Sonke. Nanogold-decorated silica monoliths as highly efficient solid-phase adsorbent for ultratrace mercury analysis in natural waters[J]. Anal. Chem., 2015,87:11122-11129. doi: 10.1021/acs.analchem.5b03303
M. Campanella, A. Onor, S. D'Ulivo, E. Giannarelli. Impact of protein concentration on the determination of thiolic groups of ovalbumin:a size exclusion chromatography-chemical vapor generation-atomic fluorescence spectrometry study via mercury labeling[J]. Anal. Chem., 2014,86:2251-2256. doi: 10.1021/ac4041795
D.Y. Deng, S. Zhang, H. Chen. Online solid sampling platform using multiwall carbon nanotube assisted matrix solid phase dispersion for mercury speciation in fish by HPLC-ICP-MS[J]. J. Anal. At. Spectrom., 2015,30:882-887. doi: 10.1039/C4JA00436A
H. Wang, B.B. Chen, S.Q. Zhu. Chip-based magnetic solid-phase microextraction online coupled with microHPLC-ICPMS for the determination of mercury species in cells[J]. Anal. Chem., 2016,88:796-802. doi: 10.1021/acs.analchem.5b03130
K. Saha, S.S. Agasti, C. Kim, X.N. Li, V.M. Rotello. Gold nanoparticles in chemical and biological sensing[J]. Chem. Rev., 2012,112:2739-2779. doi: 10.1021/cr2001178
E.M. Nolan, S.J. Lippard. Tools and tactics for the optical detection of mercuric ion[J]. Chem. Rev., 2008,108:3443-3480. doi: 10.1021/cr068000q
H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chem. Soc. Rev., 2012,41:3210-3244. doi: 10.1039/C1CS15245A
Y. Liu, E.B. Yang, R. Han, et al., A new rhodamine-based fluorescent chemosensor for mercury in aqueous media, Chin. Chem. Lett. 25(2014) 1065-1068.
H.Y. He, Z.L. Zhu, H.T. Zheng. Dielectric barrier discharge micro-plasma emission source for the determination of thimerosal in vaccines by photochemical vapor generation[J]. Microchem. J., 2012,104:7-11. doi: 10.1016/j.microc.2012.03.022
Z.L. Zhu, G.C.Y. Chan, S.J. Ray, X.R. Zhang, G.M. Hieftje. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry[J]. Anal. Chem., 2008,80:8622-8627. doi: 10.1021/ac801531j
W.S. Abdul-Majeed, J.H.L. Parada, W.B. Zimmerman. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples[J]. Anal. Bioanal. Chem., 2011,401:2713-2722. doi: 10.1007/s00216-011-5118-9
Y.L. Yu, Z. Du, M.L. Chen, J.H. Wang. Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry[J]. Angew. Chem. Int. Ed., 2008,47:7909-7912. doi: 10.1002/anie.v47:41
V. Červený, M. Horváth, J.A.C. Broekaert. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry[J]. Microchem. J., 2013,107:10-16. doi: 10.1016/j.microc.2012.05.023
U. Engel, A.M. Bilgiç, O. Haase, E. Voges, J.A. Broekaert, A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique, Anal. Chem. 72(2000) 193-197.
P. Pohl, I.J. Zapata, E. Voges, N.H. Bings, J.A.C. Broekaert. Comparison of the cold vapor generation using NaBH4 and SnCl2 as reducing agents and atomic emission spectrometry for the determination of Hg with a microstrip microwave induced argon plasma exiting from the wafer[J]. Microchim. Acta, 2008,161:175-184. doi: 10.1007/s00604-007-0887-8
K. Greda, P. Jamroz, P. Pohl. Coupling of cold vapor generation with an atmospheric pressure glow microdischarge sustained between a miniature flow helium jet and a flowing liquid cathode for the determination of mercury by optical emission spectrometry[J]. J. Anal. At. Spectrom., 2014,29:893-902. doi: 10.1039/c3ja50395j
R. Shekhar. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium[J]. Talanta, 2012,93:32-36. doi: 10.1016/j.talanta.2012.02.004
M.R. Webb, F.J. Andrade, G.M. Hieftje. Compact glow discharge for the elemental analysis of aqueous samples[J]. Anal. Chem., 2007,79:7899-7905. doi: 10.1021/ac070789x
T. Frentiu, A.I. Mihaltan, M. Senila. New method for mercury determination in microwave digested soil samples based on cold vapor capacitively coupled plasma microtorch optical emission spectrometry:comparison with atomic fluorescence spectrometry[J]. Microchem. J., 2013,110:545-552. doi: 10.1016/j.microc.2013.06.009
X.M. Jiang, Y. Chen, C.B. Zheng, X.D. Hou. Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry[J]. Anal. Chem., 2014,86:5220-5224. doi: 10.1021/ac500637p
S. Zhang, H. Luo, M.T. Peng. Determination of Hg, Fe Ni, and Co by miniaturized optical emission spectrometry integrated with flow injection photochemical vapor generation and point discharge[J]. Anal. Chem., 2015,87:10712-10718. doi: 10.1021/acs.analchem.5b02820
Z.A. Li, Q. Tan, X.D. Hou, K.L. Xu, C.B. Zheng. Single drop solution electrode glow discharge for plasma assisted-chemical vapor generation:sensitive detection of zinc and cadmium in limited amounts of samples[J]. Anal. Chem., 2014,86:12093-12099. doi: 10.1021/ac502911p
Z.L. Zhu, G.C.Y. Chan, S.J. Ray, X.R. Zhang, G.M. Hieftje. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry[J]. Anal. Chem., 2008,80:7043-7050. doi: 10.1021/ac8011126
Z.L. Zhu, Q. He, Q. Shuai, H.T. Zheng, S.H. Hu. Solution cathode glow discharge induced vapor generation of iodine for determination by inductively coupled plasma optical emission spectrometry[J]. J. Anal. At. Spectrom., 2010,25:1390-1394. doi: 10.1039/b927298d
X. Wu, W.L. Yang, M.G. Liu, X.D. Hou, C.B. Zheng. Vapor generation in dielectric barrier discharge for sensitive detection of mercury by inductively coupled plasma optical emission spectrometry[J]. J. Anal. At. Spectrom., 2011,26:1204-1209. doi: 10.1039/c1ja10016e
Z.L. Zhu, Q.J. Wu, Z.F. Liu. Dielectric barrier discharge for high efficiency plasma-chemical vapor generation of cadmium[J]. Anal. Chem., 2013,85:4150-4156. doi: 10.1021/ac400368h
Y. Lin, Y. Yang, Y.X. Li. Ultrasensitive speciation analysis of mercury in rice by headspace solid phase microextraction using porous carbons and gas chromatography-dielectric barrier discharge optical emission spectrometry[J]. Environ. Sci. Technol., 2016,50:2468-2476. doi: 10.1021/acs.est.5b04328
C. Richmonds, R.M. Sankaran. Plasma-liquid electrochemistry:rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations[J]. Appl. Phys. Lett., 2008,93131501. doi: 10.1063/1.2988283
M. Richmonds, B. Witzke. Electron-transfer reactions at the plasma-liquid interface[J]. J. Am. Chem. Soc., 2011,133:17582-17585. doi: 10.1021/ja207547b
M. Witzke, P. Rumbach, D.B. Go, R.M. Sankaran. Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions[J]. J. Phys. D:Appl. Phys., 2012,45442001. doi: 10.1088/0022-3727/45/44/442001
C.B. Zheng, R.E. Sturgeon, C. Brophy, X.D. Hou. Versatile thin-film reactor for photochemical vapor generation[J]. Anal. Chem., 2010,82:3086-3093. doi: 10.1021/ac100229k
P.Wu,H.Chen,G.L.Cheng,X.D.Hou,Exploringsurfacechemistryofnano-TiO2 for automated speciation analysis of Cr(III) and Cr(VI) in drinking water using flow injection and ET-AAS detection, J. Anal. At. Spectrom. 24(2009) 1098-1104.
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077