Citation: Jing Tan, Wu-Ji Chen, Jia Guo. Conjugated microporous polymers with distinctive π-electronic properties exhibiting enhanced optical applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1405-1411. doi: 10.1016/j.cclet.2016.06.050 shu

Conjugated microporous polymers with distinctive π-electronic properties exhibiting enhanced optical applications

  • Corresponding author: Jia Guo, applications.guojia@fudan.edu.cn
  • Received Date: 16 May 2016
    Revised Date: 17 June 2016
    Accepted Date: 28 June 2016
    Available Online: 18 August 2016

Figures(8)

  • The short review discusses a family of amorphous porous organic polymers, conjugated microporous polymer (CMP), which is distinctive in fusion of a large p-electronic conjugation within the topological network platform. The kind of polymers has shown the synthetic variety, the advanced capability and the wide applicability in contrast to the reported analogues. Herein, the significant progress of CMP applications has been summarized to showcase their capability in constructing photo-functional systems.
  • 加载中
    1. [1]

      X. Feng, X.S. Ding, D.L. Jiang. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41:6010-6022. doi: 10.1039/c2cs35157a

    2. [2]

      N.B. McKeown, P.M. Budd. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chem. Soc. Rev., 2006,35:675-683. doi: 10.1039/b600349d

    3. [3]

      M.P. Tsyurupa, V.A. Davankov. Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review[J]. React. Funct. Polym., 2006,66:768-779. doi: 10.1016/j.reactfunctpolym.2005.11.004

    4. [4]

      J.X. Jiang, F.B. Su, A. Trewin. Conjugated microporous poly (aryleneethynylene) networks[J]. Angew. Chem. Int. Ed., 2007,46:8574-8578. doi: 10.1002/anie.v46:45

    5. [5]

      Y.H. Xu, S.B. Jin, H. Xu, A. Nagai, D.L. Jiang. Conjugated microporous polymers: design, synthesis and application[J]. Chem. Soc. Rev., 2013,42:8012-8031. doi: 10.1039/c3cs60160a

    6. [6]

      K.Y. Wu, J. Guo. Controllable synthesis of multi-scale conjugated microporous polymer[J]. Acta Chim. Sinica, 2015,73:480-486. doi: 10.6023/A15020138

    7. [7]

      J. Weber, A. Thomas. Toward stable interfaces in conjugated polymers: microporous poly (p-phenylene) and poly (phenyleneethynylene) based on a spirobifluorene building block[J]. J. Am. Chem. Soc., 2008,130:6334-6335. doi: 10.1021/ja801691x

    8. [8]

      J.X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chem. Sci., 2011,2:1777-1781. doi: 10.1039/c1sc00329a

    9. [9]

      Y.H. Xu, L. Chen, Z.Q. Guo, A. Nagai, D.L. Jiang. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence[J]. J. Am. Chem. Soc., 2011,13:17622-17625.  

    10. [10]

      Y.H. Xu, A. Nagai, D.L. Jiang. Core-shell conjugated microporous polymers: a new strategy for exploring color-tunable and controllable light emissions[J]. Chem. Commun., 2013,49:1591-1593. doi: 10.1039/C2CC38211C

    11. [11]

      X.M. Liu, Y.H. Xu, D.L. Jiang. Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing[J]. J. Am. Chem. Soc., 2012,134:8738-8741. doi: 10.1021/ja303448r

    12. [12]

      C. Gu, N. Huang, J. Gao. Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo-and biosensing[J]. Angew. Chem. Int. Ed., 2014,53:4850-4855. doi: 10.1002/anie.201402141

    13. [13]

      P. Zhang, J. Guo, C.C. Wang. Magnetic CMP microspheres: multifunctional poly (phenylene ethynylene) frameworks with covalently built-in Fe3O4 nanocrystals exhibiting pronounced sensitivity for acetaminophen microdetection[J]. J. Mater. Chem., 2012,22:21426-21433. doi: 10.1039/c2jm34725c

    14. [14]

      K.Y. Wu, J. Guo, C.C. Wang. Dispersible and discrete metalloporphyrin-based CMP nanoparticles enabling colorimetric detection and quantitation of gaseous SO2[J]. Chem. Commun., 2014,50:695-697. doi: 10.1039/C3CC47234E

    15. [15]

      J.M. Serin, D.W. Brousmiche, J.M.J. Fréchet. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer[J]. Chem. Commun., 2002:2605-2607.  

    16. [16]

      L. Chen, Y. Honsho, S. Seki, D.L. Jiang. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna[J]. J. Am. Chem. Soc., 2010,132:6742-6748. doi: 10.1021/ja100327h

    17. [17]

      C. Gu, N. Huang, F. Xu, J. Gao, D.L. Jiang. Cascade exciton-pumping engines with manipulated speed and efficiency inlight-harvesting porous p-network films[J]. Sci. Rep., 2015,58867. doi: 10.1038/srep08867

    18. [18]

      P. Zhang, K.Y. Wu, J. Guo, C.C. Wang. From hyperbranched polymer to nanoscale CMP (NCMP): Improved microscopic porosity, enhanced light harvesting, and enabled solution processing into white-emitting Dye@NCMP films[J]. ACS Macro Lett., 2014,3:1139-1144. doi: 10.1021/mz5005508

    19. [19]

      C. Gu, Y.C. Chen, Z.B. Zhang. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics[J]. Adv. Mater., 2013,25:3443-3448. doi: 10.1002/adma.v25.25

    20. [20]

      C. Gu, N. Huang, Y.C. Chen. π-Conjugated microporous polymer films: designed synthesis, conducting properties, and photoenergy conversions[J]. Angew. Chem. Int. Ed., 2015,54:13594-13598. doi: 10.1002/anie.201506570

    21. [21]

      C. Gu, N. Huang, Y.C. Chen. Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions[J]. Angew. Chem. Int. Ed., 2016,128:3101-3105. doi: 10.1002/ange.201510723

    22. [22]

      J.X. Jiang, Y.Y. Li, X.F. Wu. Conjugated microporous polymers with rose bengal dye for highly efficient heterogeneous organo-photocatalysis[J]. Macromolecules, 2013,46:8779-8783. doi: 10.1021/ma402104h

    23. [23]

      R.S. Sprick, J.X. Jiang, B. Bonillo. Tunable organic photocatalysts for visiblelight-driven hydrogen evolution[J]. J. Am. Chem. Soc., 2015,137:3265-3270. doi: 10.1021/ja511552k

    24. [24]

      K. Zhang, D. Kopetzki, P.H. Seeberger, M. Antonietti, F. Vilela. Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks[J]. Angew. Chem. Int. Ed., 2013,52:1432-1436. doi: 10.1002/anie.201207163

    25. [25]

      H. Urakami, K. Zhang, F. Vilela. Modification of conjugated microporous polybenzothiadiazole for photosensitized singlet oxygen generation in water[J]. Chem. Commun., 2013,49:2353-2355. doi: 10.1039/c3cc38956a

    26. [26]

      Z.J. Wang, S. Ghasimi, K. Landfester, K.A.I. Zhang. Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light[J]. Adv. Mater., 2015,27:6265-6270. doi: 10.1002/adma.201502735

    27. [27]

      J. Tan, J.X. Wan, J. Guo, C.C. Wang. Self-sacrificial template-induced modulation of conjugated microporous polymer microcapsules and shape-dependent enhanced photothermal efficiency for ablation of cancer cells[J]. Chem. Commun., 2015,51:17394-17397. doi: 10.1039/C5CC05478H

    28. [28]

      X.S. Ding, B.H. Han. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation[J]. Angew. Chem. Int. Ed., 2015,54:6536-6539. doi: 10.1002/anie.201501732

  • 加载中
    1. [1]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    7. [7]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    8. [8]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    9. [9]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    10. [10]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    11. [11]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    14. [14]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    15. [15]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    18. [18]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    19. [19]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    20. [20]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

Metrics
  • PDF Downloads(1)
  • Abstract views(699)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return