Citation: Lu Wang, Kai-Qi Ye, Hong-Yu Zhang. Organic materials with hydrostatic pressure induced mechanochromic properties[J]. Chinese Chemical Letters, ;2016, 27(8): 1367-1375. doi: 10.1016/j.cclet.2016.06.049 shu

Organic materials with hydrostatic pressure induced mechanochromic properties

  • Corresponding author: Kai-Qi Ye, yekq@lu.edu.cn Hong-Yu Zhang, hongyuzhang@jlu.edu.cn
  • Received Date: 29 April 2016
    Revised Date: 21 June 2016
    Accepted Date: 21 June 2016
    Available Online: 27 August 2016

Figures(12)

  • Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing, grinding, and compressing etc. Organic compounds with mechanochromic characters in solid forms have attracted significant attention in the past decades due to their potential applications in sensors and memory devices. Diamond anvil cell is an emerging technology that can provide isotropic pressure in a tiny place. Thus a new stimuli method can be applied in investigating optical variation of mechanochromic materials. In this review, we focus on mechanoluminescence systems that are responsive to isotropic compression under high pressure and summarize the recent advances on organic materials studied by the diamond anvil cell.
  • 加载中
    1. [1]

      Y.Q. Dong, J.W.Y. Lam, B.Z. Tang. Mechanochromic luminescence of aggregationinduced emission Luminogens[J]. J. Phys. Chem. Lett., 2015,6:3429-3436. doi: 10.1021/acs.jpclett.5b01090

    2. [2]

      X.Y. Mu, D. Liu, X. Cheng. AuI AuI interaction induced semiconducting microwires with photo- and vapor-responsive properties[J]. Org. Electron., 2012,13:457-463. doi: 10.1016/j.orgel.2011.11.013

    3. [3]

      J. Feng, K.J. Tian, D.H. Hu. A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range, Angew[J]. Angew. Chem. Int. Ed., 2011,50:8072-8076. doi: 10.1002/anie.v50.35

    4. [4]

      T. Sato, M. Higuchi. A vapoluminescent Eu-based metallo-supramolecular polymer[J]. Chem. Commun., 2012,48:4947-4949. doi: 10.1039/c2cc30972f

    5. [5]

      W.R. Browne, M.M. Pollard, B. de Lange, A. Meetsma, B.L. Feringa. Reversible threestate switching of luminescence: a new twist to electro- and photochromic behavior[J]. J. Am. Chem. Soc., 2006,128:12412-12413. doi: 10.1021/ja064423y

    6. [6]

      X. Cheng, K. Wang, S. Huang. Organic crystals with near-infrared amplified spontaneous emissions based on 2'-hydroxychalcone derivatives: subtle structure modification but great property change[J]. Angew. Chem. Int. Ed., 2015,54:8369-8373. doi: 10.1002/anie.201503914

    7. [7]

      K. Wang, H.Y. Zhang, S.Y. Chen. Organic polymorphs: one-compound-based crystals with molecular-conformation- and packing-dependent luminescent properties[J]. Adv. Mater., 2014,26:6168-6173. doi: 10.1002/adma.201401114

    8. [8]

      X. Cheng, D. Li, Z.Y. Zhang, H.Y. Zhang, Y. Wang. Organoboron compounds with morphology-dependent NIR emissions and dual-channel fluorescent ON/OFF switching[J]. Org. Lett., 2014,16:880-883. doi: 10.1021/ol403639n

    9. [9]

      B.L. Tang, H.P. Liu, F. Li, Y. Wang, H.Y. Zhang. Single-benzene solid emitters with lasing properties based on aggregation-induced emissions[J]. Chem. Commun., 2016,52:6577-6580. doi: 10.1039/C6CC02616H

    10. [10]

      X. Cheng, Y.F. Zhang, S.H. Han. Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer[J]. Chem. Eur. J., 2016,22:4899-4903. doi: 10.1002/chem.v22.14

    11. [11]

      J.A. Xu, H.K. Mao, P.M. Bell. High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal[J]. Science, 1986,32:1404-1406.  

    12. [12]

      L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nat. Commun., 2012,31163. doi: 10.1038/ncomms2160

    13. [13]

      K. Wang, S.R. Li, X. Tan. High pressure supramolecular chemistry[J]. Chin. Sci. Bull., 2014,59:5258-5268. doi: 10.1007/s11434-014-0615-9

    14. [14]

      R. Lee, J.A.K. Howard, M.R. Probert, J.W. Steed. Structure of organic solids at low temperature and high pressure[J]. Chem. Soc. Rev., 2014,43:4300-4311. doi: 10.1039/c4cs00046c

    15. [15]

      D. Li, H.Y. Zhang, Y. Wang. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs)[J]. Chem. Soc. Rev., 2013,42:8416-8433. doi: 10.1039/c3cs60170f

    16. [16]

      S.N. Wang. Luminescence and electroluminescence of Al(III), B(III), Be(II) and Zn(II) complexes with nitrogen donors[J]. Coord. Chem. Rev., 2001,215:79-98. doi: 10.1016/S0010-8545(00)00403-3

    17. [17]

      L.S. Hung, C.H. Chen. Recent progress of molecular organic electroluminescent materials and devices[J]. Mater. Sci. Eng. R, 2002,39:143-222. doi: 10.1016/S0927-796X(02)00093-1

    18. [18]

      L. Wang, K. Wang, B. Zou. Luminescent chromism of boron diketonate crystals: distinct responses to different stresses[J]. Adv. Mater., 2015,27:2918-2922. doi: 10.1002/adma.v27.18

    19. [19]

      L. Wang, K. Wang, H.Y. Zhang. The facile realization of RGB luminescence based on one yellow emissive four-coordinate organoboron material[J]. Chem. Commun., 2015,51:7701-7704. doi: 10.1039/C5CC01113B

    20. [20]

      X.Q. Wang, Q.S. Liu, H. Yan. Piezochromic luminescence behaviors of two new benzothiazole-enamido boron difluoride complexes: intra- and inter-molecular effects induced by hydrostatic compression[J]. Chem. Commun., 2015,51:7497-7500. doi: 10.1039/C5CC01902H

    21. [21]

      H. Wang, F. Li, B.R. Gao. Doped organic crystals with high efficiency, colortunable emission toward laser application[J]. Cryst. Growth Des., 2009,9:4945-4950. doi: 10.1021/cg9007125

    22. [22]

      S.J. Yoon, S.Y. Park. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal: secondary bonding interaction in molecular stacking assembly[J]. J. Mater. Chem., 2011,21:8338-8346. doi: 10.1039/c0jm03711g

    23. [23]

      M.S. Kwon, J. Gierschner, S.J. Yoon, S.Y. Park. Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad: mechanically controlled photo-induced electron transfer (eT) in molecular assemblies[J]. Adv. Mater., 2012,24:5487-5492. doi: 10.1002/adma.v24.40

    24. [24]

      S.J. Yoon, J.W. Chung, J. Gierschner. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets[J]. J. Am. Chem. Soc., 2010,132:13675-13683. doi: 10.1021/ja1044665

    25. [25]

      C.F. Feng, K. Wang, Y.X. Xu. Unique piezochromic fluorescence behavior of organic crystal of carbazole-substituted CNDSB[J]. Chem. Commun., 2016,52:3836-3839. doi: 10.1039/C5CC09152G

    26. [26]

      Y.X. Xu, K. Wang, Y.J. Zhang. Fluorescence mutation and structural evolution of a p-conjugated molecular crystal during phase transition[J]. J. Mater. Chem. C, 2016,4:1257-1262. doi: 10.1039/C5TC03745J

    27. [27]

      H.J. Lee, J. Sohn, J. Hwang. Triphenylamine-cored bifunctional organic molecules for two-photon absorption and photorefraction[J]. Chem. Mater., 2004,16:456-465. doi: 10.1021/cm0343756

    28. [28]

      Z.Y. Ge, T. Hayakawa, S. Ando. Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole derivatives[J]. Adv. Funct. Mater., 2008,18:584-590. doi: 10.1002/(ISSN)1616-3028

    29. [29]

      J.X. Wu, H.L. Wang, S.P. Xu, W.Q. Xu. Comparison of shearing force and hydrostatic pressure on molecular structures of triphenylamine by fluorescence and Raman spectroscopies[J]. J. Phys. Chem. A, 2015,119:1303-1308. doi: 10.1021/jp511380a

    30. [30]

      Y.J. Zhang, K. Wang, G.L. Zhuang. Multicolored-fluorescence switching of ICT-type organic solids with clear color difference: mechanically controlled excited state[J]. Chem. Eur. J., 2015,21:2474-2479. doi: 10.1002/chem.v21.6

    31. [31]

      J.B. Zhang, J.L. Chen, B. Xu. Remarkable fluorescence change based on the protonation-deprotonation control in organic crystals[J]. Chem. Commun., 2013,49:3878-3880. doi: 10.1039/c3cc41171k

    32. [32]

      Y.J. Dong, B. Xu, J.B. Zhang. Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10-distyrylanthracene[J]. CrystEngComm, 2012,14:6593-6598. doi: 10.1039/c2ce25276g

    33. [33]

      Y.J. Dong, B. Xu, J.B. Zhang. Piezochromic luminescence based on the molecular aggregation of 9,10-Bis((E)-2-(pyrid-2-yl)vinyl) anthracene[J]. Angew. Chem. Int. Ed., 2012,51:10782-10785. doi: 10.1002/anie.v51.43

    34. [34]

      Y.J. Dong, J.B. Zhang, X. Tan. Multi-stimuli responsive fluorescence switching: the reversible piezochromism and protonation effect of a divinylanthracene derivative[J]. J. Mater. Chem. C, 2013,1:7554-7559. doi: 10.1039/c3tc31553c

    35. [35]

      J.D. Luo, Z.L. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741. 

    36. [36]

      X.L. Luo, W.J. Zhao, J.Q. Shi. Reversible switching emissions of tetraphenylethene derivatives among multiple colors with solvent vapor, mechanical, and thermal stimuli[J]. J. Phys. Chem. C, 2012,116:21967-21972. doi: 10.1021/jp306908u

    37. [37]

      N. Zhao, Z.Y. Yang, J.W.Y. Lam. Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission[J]. Chem. Commun., 2012,48:8637-8639. doi: 10.1039/c2cc33780k

    38. [38]

      J. Wang, J. Mei, R.R. Hu. Click synthesis, aggregation-induced emission, E/Z isomerization,self-organization,andmultiplechromismsofpurestereoisomersof a tetraphenylethene-cored luminogen[J]. J. Am. Chem. Soc., 2012,134:9956-9966. doi: 10.1021/ja208883h

    39. [39]

      Q.K. Qi, J.Y. Qian, X. Tan. Remarkable turn-on and color-tuned piezochromic luminescence: mechanically switching intramolecular charge transfer in molecular crystals[J]. Adv. Funct. Mater., 2015,25:4005-4010. doi: 10.1002/adfm.v25.26

    40. [40]

      H.S. Yuan, K. Wang, K. Yang, B.B. Liu, B. Zou. Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions[J]. J. Phys. Chem. Lett., 2014,5:2968-2973. doi: 10.1021/jz501371k

    41. [41]

      J.X. Wu, J. Tang, H.L. Wang. Reversible piezofluorochromic property and intrinsic structure changes of tetra(4-methoxyphenyl)ethylene under high pressure[J]. J. Phys. Chem. A, 2015,119:9218-9224. doi: 10.1021/acs.jpca.5b02362

    42. [42]

      K. Nagura, S. Saito, H. Yusa. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene[J]. J. Am. Chem. Soc., 2013,135:10322-10325. doi: 10.1021/ja4055228

    43. [43]

      Y.J. Zhang, Q.B. Song, K. Wang. Polymorphic crystals and their luminescence switching of triphenylacrylonitrile derivatives upon solvent vapour, mechanical, and thermal stimuli[J]. J. Mater. Chem. C, 2015,3:3049-3054. doi: 10.1039/C4TC02826K

  • 加载中
    1. [1]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    4. [4]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    5. [5]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    6. [6]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    7. [7]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    8. [8]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    9. [9]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    12. [12]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    13. [13]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    14. [14]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    15. [15]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    16. [16]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    17. [17]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    18. [18]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    19. [19]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(3)
  • Abstract views(984)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return