Citation: Meng Wang, Yu-Xi Xu. Design and construction of three-dimensional graphene/conducting polymer for supercapacitors[J]. Chinese Chemical Letters, ;2016, 27(8): 1437-1444. doi: 10.1016/j.cclet.2016.06.048 shu

Design and construction of three-dimensional graphene/conducting polymer for supercapacitors

  • Corresponding author: Yu-Xi Xu, xuyuxi@fudan.edu.cn
  • Received Date: 1 June 2016
    Revised Date: 20 June 2016
    Accepted Date: 28 June 2016
    Available Online: 25 August 2016

Figures(6)

  • Three-dimensional graphene/conducting polymer (3DGCP) composites have received significant attention in recent years due to their unique structures and promising applications in energy storage. With the structural diversity of graphene and π-functional conducting polymers via rich chemical routes, a number of 3DGCP composites with novel structures and attractive performance have been developed. Particularly, the hierarchical porosity, the interactions between graphene and conducting polymers as well as the their synergetic effects within 3DGCP composites can be well combined and elaborated by various synthetic methods, which made 3DGCP composites show unique electrochemical properties and significantly improved performance in energy storage fields compared to other graphenebased composites. In this short review, we present recent advances in 3DGCP composites in developing effective strategies to prepare 3DGCP composites and exploring them as a unique platform for supercapacitors with unprecedented performance. The challenges and future opportunities are also discussed for promotion of further study.
  • 加载中
    1. [1]

      (a) P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7(2008) 845-854; (b) Y.X. Xu, G.Q. Shi, X.F. Duan, Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors, Acc. Chem. Res. 48(2015) 1666-1675; (c) L.B. Zhang, S.R. Yang, J.Q. Wang, Y. Xu, X.Z. Kong, A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors, Chin. Chem. Lett. 26(2015) 522-528. 

    2. [2]

      (a) X.H. Cao, Z.Y. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci. 7(2014) 1850-1865; (b) Y.L. Shao, M.F. EI-Kady, L.J. Wang, et al., Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44(2015) 3639-3665. 

    3. [3]

      (a) M.H. Yu, Y.C. Huang, C. Li, et al., Building three-dimensional graphene frameworks for energy storage and catalysis, Adv. Funct. Mater. 25(2015) 324-330; (b) Y.X. Xu, C.Y. Chen, Z.P. Zhao, et al., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors, Nano Lett. 15(2015) 4605-4610. 

    4. [4]

      S. Mao, G.H. Lu, J.H. Chen. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015,7:6924-6943. doi: 10.1039/C4NR06609J

    5. [5]

      K.H.S. Lessa, Y. Zhang, G.A. Zhang, F. Xiao, S. Wang. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor[J]. J. Power Sources, 2016,302:92-97. doi: 10.1016/j.jpowsour.2015.10.036

    6. [6]

      P.P. Yu, X. Zhao, Z.L. Huang, Y.Z. Li, Q.H. Zhang. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. J. Mater. Chem. A, 2014,2:14413-14420. doi: 10.1039/C4TA02721C

    7. [7]

      Y.F. Wang, X.W. Yang, L. Qiu, D. Li. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing[J]. Energy Environ. Sci., 2013,6:477-481. doi: 10.1039/C2EE24018A

    8. [8]

      (a) Y.Q. Sun, G.Q. Shi, Graphene/polymer composites for energy applications, J. Polym. Sci. B 51(2013) 231-253; (b) J. Chen, C. Li, G.Q. Shi, Graphene materials for electrochemical capacitors, J. Phys. Chem. Lett. 4(2013) 1244-1253; (c) Y.Q. Sun, Q. Wu, G.Q. Shi, Graphene based new energy materials, Energy Environ. Sci. 4(2011) 1113-1132. 

    9. [9]

      (a) Y.X. Xu, Z.Y. Lin, X. Zhong, et al., Holey graphene frameworks for highly efficient capacitive energy storage, Nat. Commun. 5(2014) 4554-4561; (b) Y.X. Xu, Z.Y. Lin, X. Zhong, et al., Solvated graphene frameworks as highperformance anodes for lithium-ion batteries, Angew. Chem. Int. Ed. 54(2015) 5345-5350; (c) Y. Zhao, C.G. Hu, Y. Hu, et al., A versatile, ultralight, nitrogen-doped graphene framework, Angew. Chem. Int. Ed. 51(2012) 11371-11375; (d) Y.X. Xu, Z.Y. Lin, X.Q. Huang, et al., Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano 7(2013) 4042-4049; (e) Y.X. Xu, Z.Y. Lin, X.Q. Huang, et al., Functionalized graphene hydrogel-based high-performance supercapacitors, Adv. Mater. 25(2013) 5779-5784. 

    10. [10]

      H. Zhou, T. Ni, X.T. Qing. One-step construction of graphene-polypyrrole hydrogels and their superior electrochemical performance[J]. RSC Adv., 2014,4:4134-4139. doi: 10.1039/C3RA44647F

    11. [11]

      S.B. Ye, J.C. Feng. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Appl. Mater. Interfaces, 2014,6:9671-9679. doi: 10.1021/am502077p

    12. [12]

      F. Yang, M.W. Xu, S.J. Bao, H. Wei, H. Chai. Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage[J]. Electrochim. Acta, 2014,137:381-387. doi: 10.1016/j.electacta.2014.06.017

    13. [13]

      (a) N.T. Hu, L.L. Zhang, C. Yang, et al., Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors, Sci. Rep. 6(2016) 19777; (b) S. Li, K.W. Shu, C. Zhao, et al., One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery, ACS Appl. Mater. Interfaces 6(2014) 16679-16686. 

    14. [14]

      X.B. Liu, P.B. Shang, Y.B. Zhang. Three-dimensional and stable polyanilinegrafted graphene hybrid materials for supercapacitor electrodes[J]. J. Mater. Chem. A, 2014,2:15273-15278. doi: 10.1039/C4TA03077J

    15. [15]

      (a) K.W. Chen, L.B. Chen, Y.Q. Chen, H. Bai, L. Li, Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application, J. Mater. Chem. 22(2012) 20968-20976; (b) K. Chi, Z.Y. Zhang, J.B. Xi, et al., Freestanding graphene paper supported threedimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor, ACS Appl. Mater. Interfaces 6(2014) 16312-16319; (c) S.B. Kulkarni, U.M. Patil, I. Shackery, et al., High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter, J. Mater. Chem. A 2(2014) 4989-4998. 

    16. [16]

      (a) X.H. Cao, Y.M. Shi, W.H. Shi, et al., Preparation of novel 3D graphene networks for supercapacitor applications, Small 7(2011) 3163-3168; (b) F. Yavari, Z.P. Chen, A.V. Thomas, et al., High sensitivity gas detection using a macroscopic three-dimensional graphene foam network, Sci. Rep. 1(2011) 166; (c) L. Zhang, D. DeArmond, N.T. Alvarez, et al., Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes, J. Mater. Chem. A 4(2016) 1876-1886. 

    17. [17]

      (a) D.Q. Fan, Y. Liu, J.P. He, Y.W. Zhou, Y.L. Yang, Porous graphene-based materials by thermolytic cracking, J. Mater. Chem. 22(2012) 1396-1402; (b) X. Zhang, K.S. Ziemer, K. Zhang, et al., Large-area preparation of high-quality and uniform three-dimensional graphene networks through thermal degradation of graphene oxide-nitrocellulose composites, ACS Appl. Mater. Interfaces 7(2015) 1057-1064; (c) W.W. Liu, H. Li, Q.P. Zeng, et al., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties, J. Mater. Chem. A 3(2015) 3739-3747; (d) M.Q. Xue, D. Chen, X.S. Wang, J.T. Chen, G.F. Chen, Carbonized poly(vinylidene fluoride)/graphene oxide with three-dimensional multiscale-pore architecture as an advanced electrode material, J. Mater. Chem. A 3(2015) 7715-7718. 

    18. [18]

      (a) Q.Y. Peng, Y.B. Li, X.D. He, et al., Graphene nanoribbon aerogels unzipped from carbon nanotube sponges, Adv. Mater. 26(2014) 3241-3247; (b) Y.Y. Zhang, Z. Zhen, Z.L. Zhang, et al., In-situ synthesis of carbon nanotube/ graphene composite sponge and its application as compressible supercapacitor electrode, Electrochim. Acta 157(2015) 134-141. 

    19. [19]

      H.L. Liu, Y. Wang, X.L. Gou. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications[J]. Mater. Sci. Eng. B, 2013,178:293-298. doi: 10.1016/j.mseb.2012.12.002

    20. [20]

      M. Yu, Y.X. Ma, J.H. Liu, S.M. Li. Polyaniline nanocone arrays synthesized on threedimensional graphene network by electrodeposition for supercapacitor electrodes[J]. Carbon, 2015,87:98-105. doi: 10.1016/j.carbon.2015.02.017

    21. [21]

      H. Kashani, L.Y. Chen, Y. Ito. Bicontinuous nanotubular graphene-polypyrrole hybridforhighperformanceflexiblesupercapacitors[J]. NanoEnergy, 2016,19:391-400.  

    22. [22]

      J.T. Zhang, J. Wang, J.E. Yang. Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance[J]. ACS Sustain. Chem. Eng., 2014,2:2291-2296. doi: 10.1021/sc500247h

    23. [23]

      X.Y. Gu, Y. Yang, Y. Hu. Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization[J]. J. Mater. Chem. A, 2015,3:5866-5874. doi: 10.1039/C4TA06646D

    24. [24]

      W.Z. Shen, Y.M. Wang, J. Yan, H.X. Wu, S.W. Guo. Enhanced electrochemical performance of lithium iron(II) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline[J]. Electrochim. Acta, 2015,173:310-315. doi: 10.1016/j.electacta.2015.05.071

    25. [25]

      R. Sun, H.Y. Chen, Q.W. Li, Q.J. Song, X.T. Zhang. Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage[J]. Nanoscale, 2014,6:12912-12920. doi: 10.1039/C4NR03322A

    26. [26]

      Q.Q. Zhou, Y.R. Li, L. Huang, C. Li, G.Q. Shi. Three-dimensional porous graphene/ polyaniline composites for high-rate electrochemical capacitors[J]. J. Mater. Chem. A, 2014,2:17489-17494. doi: 10.1039/C4TA03639E

    27. [27]

      A.R. Liu, C. Li, H. Bai, G.Q. Shi. Electrochemical deposition of polypyrrole/sulfonated graphene composite films[J]. J. Phys. Chem., 2010,114:22783-22789.  

    28. [28]

      W. Fan, C. Zhang, W.W. Tjiu. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications[J]. ACS Appl. Mater. Interfaces, 2013,5:3382-3391. doi: 10.1021/am4003827

    29. [29]

      N.B. Trung, T.V. Tam, H.R. Kim. Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications[J]. Chem. Eng. J., 2014,255:89-96. doi: 10.1016/j.cej.2014.06.028

    30. [30]

      J. Luo, Q. Ma, H.H. Gu, Y. Zheng, X.Y. Liu. Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor[J]. Electrochim. Acta, 2015,173:184-192. doi: 10.1016/j.electacta.2015.05.053

  • 加载中
    1. [1]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    2. [2]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    3. [3]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    4. [4]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    5. [5]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    6. [6]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    7. [7]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    8. [8]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    12. [12]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    13. [13]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    14. [14]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    15. [15]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    16. [16]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(2)
  • Abstract views(638)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return