Citation: Li-Na Fu, Bing Leng, Yong-Sheng Li, Xi-Ke Gao. Photoresponsive organic field-effect transistors involving photochromic molecules[J]. Chinese Chemical Letters, ;2016, 27(8): 1319-1329. doi: 10.1016/j.cclet.2016.06.045 shu

Photoresponsive organic field-effect transistors involving photochromic molecules

  • Corresponding author: Yong-Sheng Li, ysli@ecust.edu.cn Xi-Ke Gao, gaoxk@mail.sioc.ac.cn
  • Received Date: 16 May 2016
    Revised Date: 21 June 2016
    Accepted Date: 28 June 2016
    Available Online: 8 August 2016

Figures(16)

  • In recent years, organic field-effect transistors (OFETs) with high performance and novel multifunctionalities have attracted considerable attention. Meanwhile, featured with reversible photoisomerization and the corresponding variation in color, chemical/physical properties, photochromic molecules have been applied in sensors, photo-switches and memories. Incorporation of photochromic molecules to blend in the device functional layers or to modify the interfaces of OFETs is common way to build photo-transistors. In this review, we focus on the recent advantages on the study of photoresponsive transistors involving one of three typical photochromic compounds spiropyran, diarylethene and azobenzene. Three main strategies are demonstrated in detail. Firstly, photochromic molecules are doped in active layers or combined with semiconductor structure thus forming photoreversible active layers. Secondly, the modification of dielectric layer/active layer interface is mainly carried out by bilayer dielectric. Thirdly, the photo-isomerization of self-assembled monolayer (SAM) on the electrode/active layer interface can reversibly modulate the work functions and charge injection barrier, result in bifunctional OFETs. All in all, the combination of photochromic molecules and OFETs is an efficient way for the fabrication of organic photoelectric devices. Photoresponsive transistors consisted of photochromic molecules are potential candidate for real applications in the future.
  • 加载中
    1. [1]

      B. Crone, A. Dodabalapur, A. Gelperin. Electronic sensing of vapors with organic transistors[J]. Appl. Phys. Lett., 2001,78:2229-2231. doi: 10.1063/1.1360785

    2. [2]

      C.D. Dimitrakopoulos, P.R. Malenfant. Organic thin film transistors for large area electronics[J]. Adv. Mater., 2002,14:99-117. doi: 10.1002/(ISSN)1521-4095

    3. [3]

      A. Kraft. Organic field-effect transistors-the breakthrough at last[J]. ChemPhysChem, 2001,2:163-165. doi: 10.1002/(ISSN)1439-7641

    4. [4]

      F. Wü rthner. Kunststoff-Transistoren werden reif für Massenanwendungen in der Mikroelektronik[J]. Angew. Chem., 2001,113:1069-1071. doi: 10.1002/(ISSN)1521-3757

    5. [5]

      H. Minemawari, T. Yamada, H. Matsui. Inkjet printing of single-crystal films[J]. Nature, 2011,475:364-367. doi: 10.1038/nature10313

    6. [6]

      Y. Yuan, G. Giri, A.L. Ayzner, et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nat. Commun. 5(2014). 

    7. [7]

      D. Shukla, S.F. Nelson, D.C. Freeman. Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors[J]. Chem. Mater., 2008,20:7486-7491. doi: 10.1021/cm802071w

    8. [8]

      L. Ying, B.B. Hsu, H. Zhan. Regioregular pyridal[1-3] thiadiazole π-conjugated copolymers[J]. J. Am. Chem. Soc., 2011,133:18538-18541. doi: 10.1021/ja207543g

    9. [9]

      J.H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wü rthner. Air-stable n-channel organic thinfilm transistors with high field-effect mobility based on N N'-bis (heptafluorobutyl)-3,4:9,10-perylene diimide[J]. Appl. Phys. Lett., 2007,91212107. doi: 10.1063/1.2803073

    10. [10]

      H.R. Tseng, L. Ying, B.B. Hsu. High mobility field effect transistors based on macroscopically oriented regioregular copolymers[J]. Nano Lett., 2012,12:6353-6357. doi: 10.1021/nl303612z

    11. [11]

      H.R. Tseng, H. Phan, C. Luo. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers[J]. Adv. Mater., 2014,26:2993-2998. doi: 10.1002/adma.201305084

    12. [12]

      X. Gao, Z. Zhao. High mobility organic semiconductors for field-effect transistors[J]. Sci. China Chem., 2015,58:947-968. doi: 10.1007/s11426-015-5399-5

    13. [13]

      X. Gao, Y. Hu. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design[J]. J. Mater. Chem. C, 2014,2:3099-3117. doi: 10.1039/c3tc32046d

    14. [14]

      S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf. Organic semiconductors for solution-processable field-effect transistors (OFETs)[J]. Angew. Chem. Int. Ed., 2008,47:4070-4098. doi: 10.1002/(ISSN)1521-3773

    15. [15]

      M.M. Payne, S.R. Parkin, J.E. Anthony, C.C. Kuo, T.N. Jackson. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs[J]. J. Am. Chem. Soc., 2005,127:4986-4987. doi: 10.1021/ja042353u

    16. [16]

      H. Sirringhaus. Device physics of solution-processed organic field-effect transistors[J]. Adv. Mater., 2005,17:2411-2425. doi: 10.1002/(ISSN)1521-4095

    17. [17]

      F. Zhang, Y. Hu, T. Schuettfort. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thinfilm transistors with mobility of up to 3.50 cm2 V-1 s-1[J]. J. Am. Chem. Soc., 2013,135:2338-2349. doi: 10.1021/ja311469y

    18. [18]

      J. Labram, P. Wöbkenberg, D. Bradley, T. Anthopoulos. Low-voltage ambipolar phototransistors based on a pentacene/PC 61 BM heterostructure and a selfassembled nano-dielectric[J]. Org. Electron., 2010,11:1250-1254. doi: 10.1016/j.orgel.2010.04.024

    19. [19]

      B. Mukherjee, M. Mukherjee, Y. Choi, S. Pyo. Control over multifunctionality in optoelectronic device based on organic phototransistor[J]. ACS Appl. Mater. Interfaces, 2010,2:1614-1620. doi: 10.1021/am100127q

    20. [20]

      Y.Y. Noh, D.Y. Kim, K. Yase. Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance[J]. J. Appl. Phys., 2005,98074505. doi: 10.1063/1.2061892

    21. [21]

      R. Capelli, S. Toffanin, G. Generali. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes[J]. Nat. Mater., 2010,9:496-503. doi: 10.1038/nmat2751

    22. [22]

      A. Hepp, H. Heil, W. Weise. Light-emitting field-effect transistor based on a tetracene thin film[J]. Phys. Rev. Lett., 2003,91157406. doi: 10.1103/PhysRevLett.91.157406

    23. [23]

      R.S. Dudhe, J. Sinha, A. Kumar, V.R. Rao. Polymer composite-based OFET sensor with improved sensitivity towards nitro based explosive vapors[J]. Sens. Actuators B, 2010,148:158-165. doi: 10.1016/j.snb.2010.04.022

    24. [24]

      S.C. Mannsfeld, B.C. Tee, R.M. Stoltenberg. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nat. Mater., 2010,9:859-864. doi: 10.1038/nmat2834

    25. [25]

      T.B. Singh, N. Marjanovic, G. Matt. Nonvolatile organic field-effect transistor memory element with a polymeric gate electret[J]. Appl. Phys. Lett., 2004,85:5409-5411. doi: 10.1063/1.1828236

    26. [26]

      W. Wu, H. Zhang, Y. Wang. High-performance organic transistor memory elements with steep flanks of hysteresis[J]. Adv. Funct. Mater., 2008,18:2593-2601. doi: 10.1002/adfm.v18:17

    27. [27]

      C.a. Di, F. Zhang, D. Zhu. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives[J]. Adv. Mater., 2013,25:313-330. doi: 10.1002/adma.201201502

    28. [28]

      Y. Guo, G. Yu, Y. Liu. Functional organic field-effect transistors[J]. Adv. Mater., 2010,22:4427-4447. doi: 10.1002/adma.v22:40

    29. [29]

      R. Yerushalmi, A. Scherz, M.E. van der Boom, H.B. Kraatz. Stimuli responsive materials: new avenues toward smart organic devices[J]. J. Mater. Chem., 2005,15:4480-4487. doi: 10.1039/b505212b

    30. [30]

      E.S. Matsuo, T. Tanaka. Patterns in shrinking gels[J]. Nature, 1992,358:482-485. doi: 10.1038/358482a0

    31. [31]

      W. Frey, D.E. Meyer, A. Chilkoti. Dynamic addressing of a surface pattern by a stimuli-responsive fusion protein[J]. Adv. Mater., 2003,15:248-251. doi: 10.1002/adma.200390058

    32. [32]

      S. Mendez, L.K. Ista, G.P. López. Use of stimuli responsive polymers grafted on mixed self-assembled monolayers to tune transitions in surface energy[J]. Langmuir, 2003,19:8115-8116. doi: 10.1021/la034632l

    33. [33]

      R.C. Naber, C. Tanase, P.W. Blom. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nat. Mater., 2005,4:243-248. doi: 10.1038/nmat1329

    34. [34]

      J. Covington, J. Gardner, D. Briand, N. De Rooij. A polymer gate FET sensor array for detecting organic vapours[J]. Sens. Actuators B, 2001,77:155-162. doi: 10.1016/S0925-4005(01)00687-6

    35. [35]

      A.N. Sokolov, B.C. Tee, C.J. Bettinger, J.B.H. Tok, Z. Bao. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications[J]. Acc. Chem. Res., 2011,45:361-371.  

    36. [36]

      V. Podzorov, V. Pudalov, M. Gershenson. Light-induced switching in back-gated organic transistors with built-in conduction channel[J]. Appl. Phys. Lett., 2004,85:6039-6041. doi: 10.1063/1.1836877

    37. [37]

      F. Zhang, C. Di, N. Berdunov. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating[J]. Adv. Mater., 2013,25:1401-1407. doi: 10.1002/adma.v25.10

    38. [38]

      J.T. Mabeck, G.G. Malliaras. Chemical and biological sensors based on organic thin-film transistors[J]. Anal. Bioanal. Chem., 2006,384:343-353.  

    39. [39]

      E. Orgiu, N. Crivillers, M. Herder. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor[J]. Nat. Chem., 2012,4:675-679. doi: 10.1038/nchem.1384

    40. [40]

      Y. Li, H. Zhang, C. Qi, X. Guo. Light-driven photochromism-induced reversible switching in P3HT-spiropyran hybrid transistors[J]. J. Mater. Chem., 2012,22:4261-4265. doi: 10.1039/C1JM14872A

    41. [41]

      N. Crivillers, E. Orgiu, F. Reinders, M. Mayor, P. Samorì. Optical modulation of the charge injection in an organic field-effect transistor based on photochromic self-assembled-monolayer-functionalized electrodes[J]. Adv. Mater., 2011,23:1447-1452. doi: 10.1002/adma.201003736

    42. [42]

      H. Chen, N. Cheng, W. Ma, et al., Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors, ACS nano (2015).

    43. [43]

      Y. Wakayama, R. Hayakawa, H.S. Seo. Recent progress in photoactive organic field-effect transistors[J]. Sci. Technol. Adv. Mater., 2014,15024202. doi: 10.1088/1468-6996/15/2/024202

    44. [44]

      M. Yoshida, K. Suemori, S. Uemura. Development of field-effect transistortype photorewritable memory using photochromic interface layer[J]. Jpn. J. Appl. Phys., 2010,4904D.  

    45. [45]

      C.A. Di, Y. Liu, G. Yu, D. Zhu. Interface engineering: an effective approach toward high-performance organic field-effect transistors[J]. Acc. Chem. Res., 2009,42:1573-1583. doi: 10.1021/ar9000873

    46. [46]

      M. Irie. Diarylethenes for memories and switches[J]. Chem. Rev., 2000,100:1685-1716. doi: 10.1021/cr980069d

    47. [47]

      L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches[J]. J. Am. Chem. Soc., 2014,136:910-913. doi: 10.1021/ja4122473

    48. [48]

      F.M. Raymo, M. Tomasulo. Optical processing with photochromic switches[J]. Chem. Eur. J., 2006,12:3186-3193. doi: 10.1002/(ISSN)1521-3765

    49. [49]

      H. Tian, S. Yang. Recent progresses on diarylethene based photochromic switches[J]. Chem. Soc. Rev., 2004,33:85-97. doi: 10.1039/b302356g

    50. [50]

      V.A. Bren. Fluorescent and photochromic chemosensors[J]. Russ. Chem. Rev., 2001,70:1017-1036. doi: 10.1070/RC2001v070n12ABEH000667

    51. [51]

      K. Fries, S. Samanta, S. Orski, J. Locklin, Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers, Chem. Commun. (2008) 6288-6290.

    52. [52]

      M. Alonso, V. Reboto, L. Guiscardo, A. San Martin, J. Rodriguez-Cabello. Spiropyran derivative of an elastin-like bioelastic polymer: photoresponsive molecular machine to convert sunlight into mechanical work[J]. Macromolecules, 2000,33:9480-9482. doi: 10.1021/ma001348h

    53. [53]

      V. Balzani, A. Credi, M. Venturi. Light powered molecular machines[J]. Chem. Soc. Rev., 2009,38:1542-1550. doi: 10.1039/b806328c

    54. [54]

      Y. Norikane, N. Tamaoki. Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans-cis isomerization of azobenzene[J]. Org. Lett., 2004,6:2595-2598. doi: 10.1021/ol049082c

    55. [55]

      C.C. Corredor, Z.L. Huang, K.D. Belfield. Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene[J]. Adv. Mater., 2006,18:2910-2914. doi: 10.1002/(ISSN)1521-4095

    56. [56]

      S. Kawata, Y. Kawata. Three-dimensional optical data storage using photochromic materials[J]. Chem. Rev., 2000,100:1777-1788. doi: 10.1021/cr980073p

    57. [57]

      S. Luo, K. Chen, L. Cao. Photochromic diarylethene for rewritable holographic data storage[J]. Opt. Express, 2005,13:3123-3128. doi: 10.1364/OPEX.13.003123

    58. [58]

      T. Ikeda, T. Sasaki, K. Ichimura. Photochemical switching of polarization in ferroelectric liquid-crystal films[J]. Nature, 1993,361:428-430. doi: 10.1038/361428a0

    59. [59]

      T. Ikeda, O. Tsutsumi. Optical switching and image storage by means of azobenzene liquid-crystal films[J]. Science, 1995,268:1873-1875. doi: 10.1126/science.268.5219.1873

    60. [60]

      Y. Yokoyama, T. Sagisaka, Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives, Chem. Lett. (1997) 687-688.

    61. [61]

      F.M. Raymo, S. Giordani. Signal processing at the molecular level[J]. J. Am. Chem. Soc., 2001,123:4651-4652. doi: 10.1021/ja005699n

    62. [62]

      C. Lenoble, R.S. Becker. Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 60-nitroindolinospiropyran[J]. J. Phys. Chem., 1986,90:62-65. doi: 10.1021/j100273a015

    63. [63]

      D.A. Parthenopoulos, P.M. Rentzepis. Three-dimensional optical storage memory[J]. Science, 1989,245:843-845. doi: 10.1126/science.245.4920.843

    64. [64]

      R. Klajn. Spiropyran-based dynamic materials[J]. Chem. Soc. Rev., 2014,43:148-184. doi: 10.1039/C3CS60181A

    65. [65]

      I. Vlassiouk, C.-D. Park, S.A. Vail, D. Gust, S. Smirnov. Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch[J]. Nano Lett., 2006,6:1013-1017. doi: 10.1021/nl060313d

    66. [66]

      B.I. Ipe, S. Mahima, K.G. Thomas. Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives[J]. J. Am. Chem. Soc., 2003,125:7174-7175. doi: 10.1021/ja0341182

    67. [67]

      S. Abe, K. Uchida, I. Yamazaki, M. Irie. Fatigue-resistance property of diarylethene LB films in repeating photochromic reaction[J]. Langmuir, 1997,13:5504-5506. doi: 10.1021/la970555g

    68. [68]

      G. Hartley. The cis-form of azobenzene[J]. Nature, 1937,140281.  

    69. [69]

      K.G. Yager, C.J. Barrett. Novel photo-switching using azobenzene functional materials[J]. J. Photochem. Photobiol. A, 2006,182:250-261. doi: 10.1016/j.jphotochem.2006.04.021

    70. [70]

      A.J. Harvey, A.D. Abell. Azobenzene-containing, peptidyl α-ketoesters as photobiological switches of α-chymotrypsin[J]. Tetrahedron, 2000,56:9763-9771. doi: 10.1016/S0040-4020(00)00883-8

    71. [71]

      O. Sadovski, A.A. Beharry, F. Zhang, G.A. Woolley. Spectral tuning of azobenzene photoswitches for biological applications[J]. Angew. Chem. Int. Ed., 2009,48:1484-1486. doi: 10.1002/anie.v48:8

    72. [72]

      M.-S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups[J]. Macromolecules, 1996,29:44-49. doi: 10.1021/ma950485p

    73. [73]

      Z.F. Liu, K. Hashimoto, A. Fujishima, Photoelectrochemical Information Storage Using an Azobenzene Derivative, 1990.

    74. [74]

      P. H. Rasmussen, P. Ramanujam, S. Hvilsted, R.H Berg. A remarkably efficient azobenzene peptide for holographic information storage[J]. J. Am. Chem. Soc., 1999,121:4156-4161.  

    75. [75]

      M. El Gemayel, K. Börjesson, M. Herder. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices[J]. Nat. Commun., 2015,6.  

    76. [76]

      K. Börjesson, M. Herder, L. Grubert. Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer[J]. J. Mater. Chem. C, 2015,3:4156-4161. doi: 10.1039/C5TC00401B

    77. [77]

      Q. Shen, Y. Cao, S. Liu, M.L. Steigerwald, X. Guo. Conformation-induced electrostatic gating of the conduction of spiropyran-coated organic thin-film transistors[J]. J. Phys. Chem. C, 2009,113:10807-10812. doi: 10.1021/jp9026817

    78. [78]

      B. Bunker, B. Kim, J. Houston. Direct observation of photo switching in tethered spiropyrans using the interfacial force microscope[J]. Nano Lett., 2003,3:1723-1727. doi: 10.1021/nl034759v

    79. [79]

      Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. Optical switching of carrier transport in polymeric transistors with photochromic spiropyran molecules[J]. J. Mater. Chem. C, 2013,1:3012-3016. doi: 10.1039/c3tc30130c

    80. [80]

      Y. Ishiguro, R. Hayakawa, T. Yasuda, T. Chikyow, Y. Wakayama. Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor[J]. ACS Appl. Mater. Interfaces, 2013,5:9726-9731. doi: 10.1021/am402833k

    81. [81]

      Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. Optically controllable dualgate organic transistor produced via phase separation between polymer semiconductor and photochromic spiropyran molecules[J]. ACS Appl. Mater. Interfaces, 2014,6:10415-10420. doi: 10.1021/am501884q

    82. [82]

      M. Arlt, A. Scheffler, I. Suske. Bipolar redox behaviour, field-effect mobility and transistor switching of the low-molecular azo glass AZOPD[J]. Phys Chem. Chem. Phys., 2010,12:13828-13834. doi: 10.1039/c0cp00643b

    83. [83]

      R. Hayakawa, K. Higashiguchi, K. Matsuda, T. Chikyow, Y. Wakayama. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers[J]. ACS Appl. Mater. Interfaces, 2013,5:3625-3630. doi: 10.1021/am400030z

    84. [84]

      R. Ruiz, A. Papadimitratos, A.C. Mayer, G.G. Malliaras. Thickness dependence of mobility in pentacene thin-film transistors[J]. Adv. Mater., 2005,17:1795-1798. doi: 10.1002/(ISSN)1521-4095

    85. [85]

      Q. Shen, L. Wang, S. Liu. Photoactive gate dielectrics[J]. Adv. Mater., 2010,22:3282-3287. doi: 10.1002/adma.201000471

    86. [86]

      P. Lutsyk, K. Janus, J. Sworakowski. Photoswitching of an n-type organic field effect transistor by a reversible photochromic reaction in the dielectric film[J]. J. Phys. Chem. C, 2011,115:3106-3114.  

    87. [87]

      P. Lutsyk, K. Janus, J. Sworakowski, A. Kochalska, S. Nešpůrek. Kinetic study of light-driven processes in photochromic dye-doped polymers used as gate insulators in photoswitchable organic field effect transistors[J]. Chem. Phys., 2012,404:22-27. doi: 10.1016/j.chemphys.2012.01.020

    88. [88]

      H. Zhang, J. Hui, H. Chen. Synergistic photomodulation of capacitive coupling and charge separation toward functional organic field-effect transistors with high responsivity[J]. Adv. Electron. Mater., 2015,11500159. doi: 10.1002/aelm.201500159

    89. [89]

      H. Zhang, X. Guo, J. Hui. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors[J]. Nano Lett., 2011,11:4939-4946. doi: 10.1021/nl2028798

    90. [90]

      C.W. Tseng, D.C. Huang, Y.T. Tao. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors[J]. ACS Appl. Mater. Interfaces, 2012,4:5483-5491. doi: 10.1021/am3013906

    91. [91]

      H.S. Lim, J.T. Han, D. Kwak, M. Jin, K. Cho. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern[J]. J. Am. Chem. Soc., 2006,128:14458-14459. doi: 10.1021/ja0655901

    92. [92]

      F.L. Callari, S. Petralia, S. Conoci, S. Sortino. Light-triggered DNA release by dynamic monolayer films[J]. N. J. Chem., 2008,32:1899-1903. doi: 10.1039/b808118b

    93. [93]

      M. Wirkner, J.M. Alonso, V. Maus. Triggered cell release from materials using bioadhesive photocleavable linkers[J]. Adv. Mater., 2011,23:3907-3910. doi: 10.1002/adma.v23.34

    94. [94]

      N. Crivillers, A. Liscio, F. Di Stasio. Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study[J]. Phys. Chem. Chem. Phys., 2011,13:14302-14310. doi: 10.1039/c1cp20851a

    95. [95]

      T. Mosciatti, M.G. del Rosso, M. Herder. Light-modulation of the charge injection in a polymer thin-film transistor by functionalizing the electrodes with bistable photochromic self-assembled monolayers[J]. Adv. Mater., 2016,31:6606-6611.  

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    3. [3]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    4. [4]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    5. [5]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    6. [6]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    7. [7]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    8. [8]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    9. [9]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    10. [10]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    11. [11]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    12. [12]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    15. [15]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    18. [18]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    19. [19]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    20. [20]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2024.100200

Metrics
  • PDF Downloads(7)
  • Abstract views(710)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return