Photoresponsive organic field-effect transistors involving photochromic molecules
- Corresponding author: Yong-Sheng Li, ysli@ecust.edu.cn Xi-Ke Gao, gaoxk@mail.sioc.ac.cn
Citation: Li-Na Fu, Bing Leng, Yong-Sheng Li, Xi-Ke Gao. Photoresponsive organic field-effect transistors involving photochromic molecules[J]. Chinese Chemical Letters, ;2016, 27(8): 1319-1329. doi: 10.1016/j.cclet.2016.06.045
B. Crone, A. Dodabalapur, A. Gelperin. Electronic sensing of vapors with organic transistors[J]. Appl. Phys. Lett., 2001,78:2229-2231. doi: 10.1063/1.1360785
C.D. Dimitrakopoulos, P.R. Malenfant. Organic thin film transistors for large area electronics[J]. Adv. Mater., 2002,14:99-117. doi: 10.1002/(ISSN)1521-4095
A. Kraft. Organic field-effect transistors-the breakthrough at last[J]. ChemPhysChem, 2001,2:163-165. doi: 10.1002/(ISSN)1439-7641
F. Wü rthner. Kunststoff-Transistoren werden reif für Massenanwendungen in der Mikroelektronik[J]. Angew. Chem., 2001,113:1069-1071. doi: 10.1002/(ISSN)1521-3757
H. Minemawari, T. Yamada, H. Matsui. Inkjet printing of single-crystal films[J]. Nature, 2011,475:364-367. doi: 10.1038/nature10313
Y. Yuan, G. Giri, A.L. Ayzner, et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nat. Commun. 5(2014).
D. Shukla, S.F. Nelson, D.C. Freeman. Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors[J]. Chem. Mater., 2008,20:7486-7491. doi: 10.1021/cm802071w
L. Ying, B.B. Hsu, H. Zhan. Regioregular pyridal[1-3] thiadiazole π-conjugated copolymers[J]. J. Am. Chem. Soc., 2011,133:18538-18541. doi: 10.1021/ja207543g
J.H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wü rthner. Air-stable n-channel organic thinfilm transistors with high field-effect mobility based on N N'-bis (heptafluorobutyl)-3,4:9,10-perylene diimide[J]. Appl. Phys. Lett., 2007,91212107. doi: 10.1063/1.2803073
H.R. Tseng, L. Ying, B.B. Hsu. High mobility field effect transistors based on macroscopically oriented regioregular copolymers[J]. Nano Lett., 2012,12:6353-6357. doi: 10.1021/nl303612z
H.R. Tseng, H. Phan, C. Luo. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers[J]. Adv. Mater., 2014,26:2993-2998. doi: 10.1002/adma.201305084
X. Gao, Z. Zhao. High mobility organic semiconductors for field-effect transistors[J]. Sci. China Chem., 2015,58:947-968. doi: 10.1007/s11426-015-5399-5
X. Gao, Y. Hu. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design[J]. J. Mater. Chem. C, 2014,2:3099-3117. doi: 10.1039/c3tc32046d
S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf. Organic semiconductors for solution-processable field-effect transistors (OFETs)[J]. Angew. Chem. Int. Ed., 2008,47:4070-4098. doi: 10.1002/(ISSN)1521-3773
M.M. Payne, S.R. Parkin, J.E. Anthony, C.C. Kuo, T.N. Jackson. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs[J]. J. Am. Chem. Soc., 2005,127:4986-4987. doi: 10.1021/ja042353u
H. Sirringhaus. Device physics of solution-processed organic field-effect transistors[J]. Adv. Mater., 2005,17:2411-2425. doi: 10.1002/(ISSN)1521-4095
F. Zhang, Y. Hu, T. Schuettfort. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thinfilm transistors with mobility of up to 3.50 cm2 V-1 s-1[J]. J. Am. Chem. Soc., 2013,135:2338-2349. doi: 10.1021/ja311469y
J. Labram, P. Wöbkenberg, D. Bradley, T. Anthopoulos. Low-voltage ambipolar phototransistors based on a pentacene/PC 61 BM heterostructure and a selfassembled nano-dielectric[J]. Org. Electron., 2010,11:1250-1254. doi: 10.1016/j.orgel.2010.04.024
B. Mukherjee, M. Mukherjee, Y. Choi, S. Pyo. Control over multifunctionality in optoelectronic device based on organic phototransistor[J]. ACS Appl. Mater. Interfaces, 2010,2:1614-1620. doi: 10.1021/am100127q
Y.Y. Noh, D.Y. Kim, K. Yase. Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance[J]. J. Appl. Phys., 2005,98074505. doi: 10.1063/1.2061892
R. Capelli, S. Toffanin, G. Generali. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes[J]. Nat. Mater., 2010,9:496-503. doi: 10.1038/nmat2751
A. Hepp, H. Heil, W. Weise. Light-emitting field-effect transistor based on a tetracene thin film[J]. Phys. Rev. Lett., 2003,91157406. doi: 10.1103/PhysRevLett.91.157406
R.S. Dudhe, J. Sinha, A. Kumar, V.R. Rao. Polymer composite-based OFET sensor with improved sensitivity towards nitro based explosive vapors[J]. Sens. Actuators B, 2010,148:158-165. doi: 10.1016/j.snb.2010.04.022
S.C. Mannsfeld, B.C. Tee, R.M. Stoltenberg. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nat. Mater., 2010,9:859-864. doi: 10.1038/nmat2834
T.B. Singh, N. Marjanovic, G. Matt. Nonvolatile organic field-effect transistor memory element with a polymeric gate electret[J]. Appl. Phys. Lett., 2004,85:5409-5411. doi: 10.1063/1.1828236
W. Wu, H. Zhang, Y. Wang. High-performance organic transistor memory elements with steep flanks of hysteresis[J]. Adv. Funct. Mater., 2008,18:2593-2601. doi: 10.1002/adfm.v18:17
C.a. Di, F. Zhang, D. Zhu. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives[J]. Adv. Mater., 2013,25:313-330. doi: 10.1002/adma.201201502
Y. Guo, G. Yu, Y. Liu. Functional organic field-effect transistors[J]. Adv. Mater., 2010,22:4427-4447. doi: 10.1002/adma.v22:40
R. Yerushalmi, A. Scherz, M.E. van der Boom, H.B. Kraatz. Stimuli responsive materials: new avenues toward smart organic devices[J]. J. Mater. Chem., 2005,15:4480-4487. doi: 10.1039/b505212b
E.S. Matsuo, T. Tanaka. Patterns in shrinking gels[J]. Nature, 1992,358:482-485. doi: 10.1038/358482a0
W. Frey, D.E. Meyer, A. Chilkoti. Dynamic addressing of a surface pattern by a stimuli-responsive fusion protein[J]. Adv. Mater., 2003,15:248-251. doi: 10.1002/adma.200390058
S. Mendez, L.K. Ista, G.P. López. Use of stimuli responsive polymers grafted on mixed self-assembled monolayers to tune transitions in surface energy[J]. Langmuir, 2003,19:8115-8116. doi: 10.1021/la034632l
R.C. Naber, C. Tanase, P.W. Blom. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nat. Mater., 2005,4:243-248. doi: 10.1038/nmat1329
J. Covington, J. Gardner, D. Briand, N. De Rooij. A polymer gate FET sensor array for detecting organic vapours[J]. Sens. Actuators B, 2001,77:155-162. doi: 10.1016/S0925-4005(01)00687-6
A.N. Sokolov, B.C. Tee, C.J. Bettinger, J.B.H. Tok, Z. Bao. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications[J]. Acc. Chem. Res., 2011,45:361-371.
V. Podzorov, V. Pudalov, M. Gershenson. Light-induced switching in back-gated organic transistors with built-in conduction channel[J]. Appl. Phys. Lett., 2004,85:6039-6041. doi: 10.1063/1.1836877
F. Zhang, C. Di, N. Berdunov. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating[J]. Adv. Mater., 2013,25:1401-1407. doi: 10.1002/adma.v25.10
J.T. Mabeck, G.G. Malliaras. Chemical and biological sensors based on organic thin-film transistors[J]. Anal. Bioanal. Chem., 2006,384:343-353.
E. Orgiu, N. Crivillers, M. Herder. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor[J]. Nat. Chem., 2012,4:675-679. doi: 10.1038/nchem.1384
Y. Li, H. Zhang, C. Qi, X. Guo. Light-driven photochromism-induced reversible switching in P3HT-spiropyran hybrid transistors[J]. J. Mater. Chem., 2012,22:4261-4265. doi: 10.1039/C1JM14872A
N. Crivillers, E. Orgiu, F. Reinders, M. Mayor, P. Samorì. Optical modulation of the charge injection in an organic field-effect transistor based on photochromic self-assembled-monolayer-functionalized electrodes[J]. Adv. Mater., 2011,23:1447-1452. doi: 10.1002/adma.201003736
H. Chen, N. Cheng, W. Ma, et al., Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors, ACS nano (2015).
Y. Wakayama, R. Hayakawa, H.S. Seo. Recent progress in photoactive organic field-effect transistors[J]. Sci. Technol. Adv. Mater., 2014,15024202. doi: 10.1088/1468-6996/15/2/024202
M. Yoshida, K. Suemori, S. Uemura. Development of field-effect transistortype photorewritable memory using photochromic interface layer[J]. Jpn. J. Appl. Phys., 2010,4904D.
C.A. Di, Y. Liu, G. Yu, D. Zhu. Interface engineering: an effective approach toward high-performance organic field-effect transistors[J]. Acc. Chem. Res., 2009,42:1573-1583. doi: 10.1021/ar9000873
M. Irie. Diarylethenes for memories and switches[J]. Chem. Rev., 2000,100:1685-1716. doi: 10.1021/cr980069d
L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches[J]. J. Am. Chem. Soc., 2014,136:910-913. doi: 10.1021/ja4122473
F.M. Raymo, M. Tomasulo. Optical processing with photochromic switches[J]. Chem. Eur. J., 2006,12:3186-3193. doi: 10.1002/(ISSN)1521-3765
H. Tian, S. Yang. Recent progresses on diarylethene based photochromic switches[J]. Chem. Soc. Rev., 2004,33:85-97. doi: 10.1039/b302356g
V.A. Bren. Fluorescent and photochromic chemosensors[J]. Russ. Chem. Rev., 2001,70:1017-1036. doi: 10.1070/RC2001v070n12ABEH000667
K. Fries, S. Samanta, S. Orski, J. Locklin, Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers, Chem. Commun. (2008) 6288-6290.
M. Alonso, V. Reboto, L. Guiscardo, A. San Martin, J. Rodriguez-Cabello. Spiropyran derivative of an elastin-like bioelastic polymer: photoresponsive molecular machine to convert sunlight into mechanical work[J]. Macromolecules, 2000,33:9480-9482. doi: 10.1021/ma001348h
V. Balzani, A. Credi, M. Venturi. Light powered molecular machines[J]. Chem. Soc. Rev., 2009,38:1542-1550. doi: 10.1039/b806328c
Y. Norikane, N. Tamaoki. Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans-cis isomerization of azobenzene[J]. Org. Lett., 2004,6:2595-2598. doi: 10.1021/ol049082c
C.C. Corredor, Z.L. Huang, K.D. Belfield. Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene[J]. Adv. Mater., 2006,18:2910-2914. doi: 10.1002/(ISSN)1521-4095
S. Kawata, Y. Kawata. Three-dimensional optical data storage using photochromic materials[J]. Chem. Rev., 2000,100:1777-1788. doi: 10.1021/cr980073p
S. Luo, K. Chen, L. Cao. Photochromic diarylethene for rewritable holographic data storage[J]. Opt. Express, 2005,13:3123-3128. doi: 10.1364/OPEX.13.003123
T. Ikeda, T. Sasaki, K. Ichimura. Photochemical switching of polarization in ferroelectric liquid-crystal films[J]. Nature, 1993,361:428-430. doi: 10.1038/361428a0
T. Ikeda, O. Tsutsumi. Optical switching and image storage by means of azobenzene liquid-crystal films[J]. Science, 1995,268:1873-1875. doi: 10.1126/science.268.5219.1873
Y. Yokoyama, T. Sagisaka, Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives, Chem. Lett. (1997) 687-688.
F.M. Raymo, S. Giordani. Signal processing at the molecular level[J]. J. Am. Chem. Soc., 2001,123:4651-4652. doi: 10.1021/ja005699n
C. Lenoble, R.S. Becker. Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 60-nitroindolinospiropyran[J]. J. Phys. Chem., 1986,90:62-65. doi: 10.1021/j100273a015
D.A. Parthenopoulos, P.M. Rentzepis. Three-dimensional optical storage memory[J]. Science, 1989,245:843-845. doi: 10.1126/science.245.4920.843
R. Klajn. Spiropyran-based dynamic materials[J]. Chem. Soc. Rev., 2014,43:148-184. doi: 10.1039/C3CS60181A
I. Vlassiouk, C.-D. Park, S.A. Vail, D. Gust, S. Smirnov. Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch[J]. Nano Lett., 2006,6:1013-1017. doi: 10.1021/nl060313d
B.I. Ipe, S. Mahima, K.G. Thomas. Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives[J]. J. Am. Chem. Soc., 2003,125:7174-7175. doi: 10.1021/ja0341182
S. Abe, K. Uchida, I. Yamazaki, M. Irie. Fatigue-resistance property of diarylethene LB films in repeating photochromic reaction[J]. Langmuir, 1997,13:5504-5506. doi: 10.1021/la970555g
G. Hartley. The cis-form of azobenzene[J]. Nature, 1937,140281.
K.G. Yager, C.J. Barrett. Novel photo-switching using azobenzene functional materials[J]. J. Photochem. Photobiol. A, 2006,182:250-261. doi: 10.1016/j.jphotochem.2006.04.021
A.J. Harvey, A.D. Abell. Azobenzene-containing, peptidyl α-ketoesters as photobiological switches of α-chymotrypsin[J]. Tetrahedron, 2000,56:9763-9771. doi: 10.1016/S0040-4020(00)00883-8
O. Sadovski, A.A. Beharry, F. Zhang, G.A. Woolley. Spectral tuning of azobenzene photoswitches for biological applications[J]. Angew. Chem. Int. Ed., 2009,48:1484-1486. doi: 10.1002/anie.v48:8
M.-S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups[J]. Macromolecules, 1996,29:44-49. doi: 10.1021/ma950485p
Z.F. Liu, K. Hashimoto, A. Fujishima, Photoelectrochemical Information Storage Using an Azobenzene Derivative, 1990.
P. H. Rasmussen, P. Ramanujam, S. Hvilsted, R.H Berg. A remarkably efficient azobenzene peptide for holographic information storage[J]. J. Am. Chem. Soc., 1999,121:4156-4161.
M. El Gemayel, K. Börjesson, M. Herder. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices[J]. Nat. Commun., 2015,6.
K. Börjesson, M. Herder, L. Grubert. Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer[J]. J. Mater. Chem. C, 2015,3:4156-4161. doi: 10.1039/C5TC00401B
Q. Shen, Y. Cao, S. Liu, M.L. Steigerwald, X. Guo. Conformation-induced electrostatic gating of the conduction of spiropyran-coated organic thin-film transistors[J]. J. Phys. Chem. C, 2009,113:10807-10812. doi: 10.1021/jp9026817
B. Bunker, B. Kim, J. Houston. Direct observation of photo switching in tethered spiropyrans using the interfacial force microscope[J]. Nano Lett., 2003,3:1723-1727. doi: 10.1021/nl034759v
Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. Optical switching of carrier transport in polymeric transistors with photochromic spiropyran molecules[J]. J. Mater. Chem. C, 2013,1:3012-3016. doi: 10.1039/c3tc30130c
Y. Ishiguro, R. Hayakawa, T. Yasuda, T. Chikyow, Y. Wakayama. Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor[J]. ACS Appl. Mater. Interfaces, 2013,5:9726-9731. doi: 10.1021/am402833k
Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. Optically controllable dualgate organic transistor produced via phase separation between polymer semiconductor and photochromic spiropyran molecules[J]. ACS Appl. Mater. Interfaces, 2014,6:10415-10420. doi: 10.1021/am501884q
M. Arlt, A. Scheffler, I. Suske. Bipolar redox behaviour, field-effect mobility and transistor switching of the low-molecular azo glass AZOPD[J]. Phys Chem. Chem. Phys., 2010,12:13828-13834. doi: 10.1039/c0cp00643b
R. Hayakawa, K. Higashiguchi, K. Matsuda, T. Chikyow, Y. Wakayama. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers[J]. ACS Appl. Mater. Interfaces, 2013,5:3625-3630. doi: 10.1021/am400030z
R. Ruiz, A. Papadimitratos, A.C. Mayer, G.G. Malliaras. Thickness dependence of mobility in pentacene thin-film transistors[J]. Adv. Mater., 2005,17:1795-1798. doi: 10.1002/(ISSN)1521-4095
Q. Shen, L. Wang, S. Liu. Photoactive gate dielectrics[J]. Adv. Mater., 2010,22:3282-3287. doi: 10.1002/adma.201000471
P. Lutsyk, K. Janus, J. Sworakowski. Photoswitching of an n-type organic field effect transistor by a reversible photochromic reaction in the dielectric film[J]. J. Phys. Chem. C, 2011,115:3106-3114.
P. Lutsyk, K. Janus, J. Sworakowski, A. Kochalska, S. Nešpůrek. Kinetic study of light-driven processes in photochromic dye-doped polymers used as gate insulators in photoswitchable organic field effect transistors[J]. Chem. Phys., 2012,404:22-27. doi: 10.1016/j.chemphys.2012.01.020
H. Zhang, J. Hui, H. Chen. Synergistic photomodulation of capacitive coupling and charge separation toward functional organic field-effect transistors with high responsivity[J]. Adv. Electron. Mater., 2015,11500159. doi: 10.1002/aelm.201500159
H. Zhang, X. Guo, J. Hui. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors[J]. Nano Lett., 2011,11:4939-4946. doi: 10.1021/nl2028798
C.W. Tseng, D.C. Huang, Y.T. Tao. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors[J]. ACS Appl. Mater. Interfaces, 2012,4:5483-5491. doi: 10.1021/am3013906
H.S. Lim, J.T. Han, D. Kwak, M. Jin, K. Cho. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern[J]. J. Am. Chem. Soc., 2006,128:14458-14459. doi: 10.1021/ja0655901
F.L. Callari, S. Petralia, S. Conoci, S. Sortino. Light-triggered DNA release by dynamic monolayer films[J]. N. J. Chem., 2008,32:1899-1903. doi: 10.1039/b808118b
M. Wirkner, J.M. Alonso, V. Maus. Triggered cell release from materials using bioadhesive photocleavable linkers[J]. Adv. Mater., 2011,23:3907-3910. doi: 10.1002/adma.v23.34
N. Crivillers, A. Liscio, F. Di Stasio. Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study[J]. Phys. Chem. Chem. Phys., 2011,13:14302-14310. doi: 10.1039/c1cp20851a
T. Mosciatti, M.G. del Rosso, M. Herder. Light-modulation of the charge injection in a polymer thin-film transistor by functionalizing the electrodes with bistable photochromic self-assembled monolayers[J]. Adv. Mater., 2016,31:6606-6611.
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Xiang Wang , Qingping Song , Zixiang He , Gong Zhang , Tengfei Miao , Xiaoxiao Cheng , Wei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Wen-Bo Wei , Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2024.100200