Graphene-based materials for polymer solar cells
- Corresponding author: Xu-Dong Chen, cescxd@mail.sysu.edu.cn Ding-Shan Yu, yudings@mail.sysu.edu.cn
Citation: Xiao-Feng Lin, Zi-Yan Zhang, Zhong-Ke Yuan, Jing Li, Xiao-Fen Xiao, Wei Hong, Xu-Dong Chen, Ding-Shan Yu. Graphene-based materials for polymer solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1259-1270. doi: 10.1016/j.cclet.2016.06.041
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995,270:1789-1791. doi: 10.1126/science.270.5243.1789
J.Y. Kim, K. Lee, N.E. Coates. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007,317:222-225. doi: 10.1126/science.1141711
G. Li, R. Zhu, Y. Yang. Polymer solar cells[J]. Nat. Photon., 2012,6:153-161. doi: 10.1038/nphoton.2012.11
J. Liu, M. Durstock, L.M. Dai. Graphene oxide derivatives as hole-and electronextraction layers for high-performance polymer solar cells[J]. Energy Environ. Sci., 2014,7:1297-1306. doi: 10.1039/C3EE42963F
M.T. Dang, L. Hirsch, G. Wantz, J.D. Wuest. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[J]. Chem. Rev., 2013,113:3734-3765. doi: 10.1021/cr300005u
Y.H. Liu, J.B. Zhao, Z.K. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,55293. doi: 10.1038/ncomms6293
B. Yang, Y.B. Yuan, P. Sharma. Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells[J]. Adv. Mater., 2012,24:1455-1460. doi: 10.1002/adma.201104509
X.P Xu, Z.J Li, Z.G Wang. 10.20% efficiency polymer solar cells via employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-cascade indene-C70 bisadduct acceptor[J]. Nano Energy, 2016,25:170-183. doi: 10.1016/j.nanoen.2016.04.048
K. Li, Z.J. Li, K. Feng. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J. Am. Chem. Soc., 2013,135:13549-13557. doi: 10.1021/ja406220a
S.K. Hau, H.L. Yip, A.K.Y. Jen. A review on the development of the inverted polymer solar cell architecture[J]. Polym. Rev, 2010,50:474-510. doi: 10.1080/15583724.2010.515764
Z.C. He, C.M. Zhong, S.J. Su. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012,6:593-597. doi: 10.1038/nphoton.2012.190
J.B. You, C.C. Chen, L.T. Dou. Metal oxide nanoparticles as an electrontransport layer in high-performance and stable inverted polymer solar cells[J]. Adv. Mater., 2012,24:5267-5272. doi: 10.1002/adma.201201958
X.F. Lin, Y.Z. Yang, L. Nian. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency[J]. Nano Energy, 2016,26:216-223. doi: 10.1016/j.nanoen.2016.05.011
J.B. You, L.T. Dou, K. Yoshimura. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commu, 2013,4:1446-1455. doi: 10.1038/ncomms2411
A.K. Geim, K.S. Novoselov. The rise of graphene[J]. Nat. Mater., 2007,6:183-191. doi: 10.1038/nmat1849
D. Chen, H. Zhang, Y. Liu, J.H. Li. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013,6:1362-1387. doi: 10.1039/c3ee23586f
D.W. Chang, H.J. Choi, A. Filer, J.B. Baek. Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs)[J]. J. Mater. Chem. A, 2014,2:12136-12149. doi: 10.1039/C4TA01047G
Z.K. Liu, S.P. Lau, F. Yan. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chem. Soc. Rev., 2015,44:5638-5679. doi: 10.1039/C4CS00455H
L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010,4:1321-1326. doi: 10.1021/nn901850u
J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nat. Chem., 2010,2:760-765. doi: 10.1038/nchem.763
L.M. Dai. Functionalization of graphene for efficient energy conversion and storage[J]. Acc. Chem. Res., 2013,46:31-42. doi: 10.1021/ar300122m
D.S. Yu, K.L. Goh, H. Wang. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nat. Nanotechnol., 2014,9:555-562. doi: 10.1038/nnano.2014.93
D.S. Yu, Q. Qian, L. Wei. Emergence of fiber supercapacitors[J]. Chem. Soc. Rev., 2015,44:647-662. doi: 10.1039/C4CS00286E
V. Yong, J.M. Tour. Theoretical efficiency of nanostructured graphene-based photovoltaics[J]. Small, 2010,6:313-318. doi: 10.1002/smll.v6:2
J. Kim, V.C. Tung, J.X. Huang. Water processable graphene oxide: single walled carbon nanotube composite as anode modifier for polymer solar cells[J]. Adv. Energy Mater., 2011,1:1052-1057. doi: 10.1002/aenm.201100466
I.P. Murray, S.J. Lou, L.J. Cote. Graphene oxide interlayers for robust, highefficiency organic photovoltaics[J]. J. Phys. Chem. Lett., 2011,2:3006-3012. doi: 10.1021/jz201493d
D.H. Wang, J.K. Kim, J.H. Seo. Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells[J]. Angew. Chem. Int. Ed., 2013,52:2874-2880. doi: 10.1002/anie.201209999
J.C. Yu, J.I. Jang, B.R. Lee. Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer[J]. ACS Appl. Mater. Interfaces, 2014,6:2067-2073. doi: 10.1021/am4051487
A.R.B.M. Yusoff, S.J. Lee, F.K. Shneider, W.J. da Silva, J. Jang. High-performance semitransparent tandem solar cell of 8.02% conversion efficiency with solutionprocessed graphene mesh and laminated Ag nanowire top electrodes[J]. Adv. Energy Mater., 2014,4:3412-3420.
Y.H. Chen, W.C. Lin, J. Liu, L.M. Dai. Graphene oxide-based carbon interconnecting layer for polymer tandem solar cells[J]. Nano Lett., 2014,14:1467-1471. doi: 10.1021/nl4046284
J.H. Du, S.F. Pei, L.P. Ma, H.M. Cheng. 25th anniversary article: carbon nanotubeand graphene-based transparent conductive films for optoelectronic devices[J]. Adv. Mater, 2014,26:1958-1991. doi: 10.1002/adma.201304135
Z.Y. Yin, S.Y. Sun, T. Salim. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes[J]. ACS Nano, 2010,4:5263-5268. doi: 10.1021/nn1015874
Y.F. Xu, G.K. Long, L. Huang. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting[J]. Carbon, 2010,48:3308-3311. doi: 10.1016/j.carbon.2010.05.017
Q. Zhang, X.J. Wan, F. Xing. Solution-processable graphene mesh transparent electrodes for organic solar cells[J]. Nano Res., 2013,6:478-484. doi: 10.1007/s12274-013-0325-7
Y.Y. Choi, S.J. Kang, H.K. Kim, W.M. Choi, S.I. Na. Multilayer graphene films as transparent electrodes for organic photovoltaic devices[J]. Sol. Energy Mater. Sol. Cells, 2012,96:281-285. doi: 10.1016/j.solmat.2011.09.031
Z.K. Liu, J.H. Li, Z.H. Sun. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2012,6:810-818. doi: 10.1021/nn204675r
Z.K. Liu, J.H. Li, F. Yan. Package-free flexible organic solar cells with graphene top electrodes[J]. Adv. Mater., 2013,25:4296-4301. doi: 10.1002/adma.v25.31
Z.K. Liu, P. You, S.H. Liu, F. Yan. Neutral-color semitransparent organic solar cells with all-graphene electrodes[J]. ACS Nano, 2015,9:12026-12034. doi: 10.1021/acsnano.5b04858
A.R.b.M. Yusoff, D. Kim, F.K. Schneider. Au-doped single layer graphene nanoribbons for a record-high efficiency ITO-Free tandem polymer solar cells[J]. Energy Environ. Sci., 2015,8:1523-1537. doi: 10.1039/C5EE00749F
H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen. Interface engineering for organic electronics[J]. Adv. Funct. Mater., 2010,20:1371-1388. doi: 10.1002/adfm.200902236
M. Girtan, M. Rusu. Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells[J]. Sol. Energy Mater. Sol. Cells, 2010,94:446-450. doi: 10.1016/j.solmat.2009.10.026
M. Jørgensen, K. Norrman, F.C. Krebs. Stability/degradation of polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2008,92:686-714. doi: 10.1016/j.solmat.2008.01.005
W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells[J]. J. Phys. Chem. B., 2005,109:9505-9516. doi: 10.1021/jp050745x
A.K.K. Kyaw, D.H. Wang, V. Gupta. Efficient solution-processed smallmolecule solar cells with inverted structure[J]. Adv. Mater., 2013,25:2397-2402. doi: 10.1002/adma.v25.17
B.J. Moon, K.S. Lee, J. Shim. Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer[J]. Nano Energy, 2016,20:221-232. doi: 10.1016/j.nanoen.2015.11.039
E.S. Choi, Y.J. Jeon, S.S. Kim. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells[J]. Appl. Phys. Lett., 2015,107023301. doi: 10.1063/1.4926799
J.S. Yeo, J.M. Yun, Y.S. Jung. Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells[J]. J. Mater. Chem. A, 2014,2:292-298. doi: 10.1039/C3TA13647G
A.F. Hu, Q.X. Wang, L. Chen. In situ formation of ZnO in graphene: a facile way to produce a smooth and highly conductive electron transport layer for polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:16078-16085. doi: 10.1021/acsami.5b04555
L.Y. Zhou, D. Yang, W. Yu, J. Zhang, C. Li. An efficient polymer solar cell using graphene oxide interface assembled via layer-by-layer deposition[J]. Org. Electron., 2015,23:110-115. doi: 10.1016/j.orgel.2015.04.017
M.K. Chuang, F.C. Chen. Synergistic plasmonic effects of metal nanoparticledecorated PEGylated graphene oxides in polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:7397-7405. doi: 10.1021/acsami.5b01161
S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, M. Chhowalla. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010,4:3169-3174. doi: 10.1021/nn100551j
S. Mao, H.H. Pu, J.H. Chen. Graphene oxide and its reduction: modeling and experimental progress[J]. RSC Adv., 2012,2:2643-2662. doi: 10.1039/c2ra00663d
Y.J. Jeon, J.M. Yun, D.Y. Kim, S.I. Na, S.S. Kim. High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer[J]. Sol. Energy Mater. Sol. Cells, 2012,105:96-102. doi: 10.1016/j.solmat.2012.05.024
J. Liu, Y.H. Xue, L.M. Dai. Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells[J]. J. Phys. Chem. Lett., 2012,3:1928-1933. doi: 10.1021/jz300723h
D. Yang, L.Y. Zhou, W. Yu, J. Zhang, C. Li. Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells[J]. Adv. Energy Mater., 2014,41400591. doi: 10.1002/aenm.201400591
S. Wang, P.K. Ang, Z.Q. Wang. High mobility, printable, and solutionprocessed graphene electronics[J]. Nano Lett., 2010,10:92-98. doi: 10.1021/nl9028736
J. Liu, Y.H. Xue, Y.X. Gao. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Adv. Mater., 2012,24:2228-2233. doi: 10.1002/adma.201104945
H.B. Yang, Y.Q. Dong, X.Z. Wang. Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2013,117:214-218. doi: 10.1016/j.solmat.2013.05.060
H.B. Yang, Y.Q. Dong, X.Z. Wang. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6:1092-1099. doi: 10.1021/am404638e
Z.C. Ding, Z. Hao, B. Meng. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells[J]. Nano Energy, 2015,15:186-192. doi: 10.1016/j.nanoen.2015.04.019
Z.C.Ding, Z.S.Miao, Z.Y.Xie, J.Liu. Functionalizedgraphenequantumdotsasanovel cathode interlayer of polymer solar cells[J]. J. Mater. Chem. A, 2016,4:2413-2418. doi: 10.1039/C5TA10102F
W.U. Huynh, J.J. Dittmer, A.P. Alivisatos. Hybrid nanorod-polymer solar cells[J]. Science, 2002,295:2425-2427. doi: 10.1126/science.1069156
W.L. Meng, X. Zhou, Z.L. Qiu. Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymerbased solar cells[J]. Carbon, 2016,96:532-540. doi: 10.1016/j.carbon.2015.09.068
M.M. Stylianakis, M. Sygletou, K. Savva. Photochemical synthesis of solution-processable graphene derivatives with tunable bandgaps for organic solar cells[J]. Adv. Opt. Mater., 2015,3:658-666. doi: 10.1002/adom.v3.5
Z.F. Liu, Q. Liu, Y. Huang. Organic photovoltaic devices based on a novel acceptor material: graphene[J]. Adv. Mater., 2008,20:3924-3930. doi: 10.1002/adma.v20:20
Q. Liu, Z.F. Liu, X.Y. Zhang. Polymer photovoltaic cells based on solutionprocessable graphene and P3HT[J]. Adv. Funct. Mater., 2009,19:894-904. doi: 10.1002/adfm.v19:6
D.S. Yu, Y. Yang, M. Durstock, J.B. Baek, L.M. Dai. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices[J]. ACS Nano, 2010,4:5633-5640. doi: 10.1021/nn101671t
D.S. Yu, K. Park, M. Durstock, L.M. Dai. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J]. J. Phys. Chem. Lett., 2011,2:1113-1118. doi: 10.1021/jz200428y
C. Li, Y.H. Chen, S.A. Ntim, S. Mitra. Fullerene-multiwalled carbon nanotube complexes for bulk heterojunction photovoltaic cells[J]. Appl. Phys. Lett., 2010,96143303. doi: 10.1063/1.3386526
Y. Li, Y. Hu, Y. Zhao. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011,23:776-780. doi: 10.1002/adma.201003819
V. Gupta, N. Chaudhary, R. Srivastava. Luminescent graphene quantum dots for organic photovoltaic devices[J]. J. Am. Chem. Soc., 2011,133:9960-9963. doi: 10.1021/ja2036749
F.S. Li, L.J. Kou, W. Chen, C.X. Wu, T.L. Guo. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes[J]. NPG Asia Mater., 2013,5e60. doi: 10.1038/am.2013.38
J.K. Kim, M.J. Park, S.J. Kim. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells[J]. ACS Nano, 2013,7:7207-7212. doi: 10.1021/nn402606v
G.H. Jun, S.H. Jin, B. Lee. Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells[J]. Energy Environ. Sci., 2013,6:3000-3006. doi: 10.1039/c3ee40963e
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468