Citation: Leng Xin-Li, Song Li-Li, Lu Yan, Liu Xiao-Qing, Wang Li. Observations of carbon-carbon coupling of 4, 4-dibromo-pterphenyl on Cu (110) surface at molecular level[J]. Chinese Chemical Letters, ;2017, 28(1): 24-28. doi: 10.1016/j.cclet.2016.06.036 shu

Observations of carbon-carbon coupling of 4, 4-dibromo-pterphenyl on Cu (110) surface at molecular level

  • Corresponding author: Liu Xiao-Qing, liuxiaoqing@ncu.edu.cn
  • Received Date: 25 May 2016
    Revised Date: 14 June 2016
    Accepted Date: 24 June 2016
    Available Online: 2 January 2016

Figures(3)

  • The carbon-carbon couplings of 4, 4"-dibromo-p-terphenyl (DBTP) on Cu (110) surface have been investigated at a single molecular level by scanning tunneling microscopy. After annealing at 353 K, a mixture of parallel non-organometallic and organometallic intermediates of DBTP molecules along the[1-10] direction of the surface has been observed. Further annealing at 393 K causes one group of molecules to form oligomers with para-para and para-meta motifs via Ullmann reaction and the other group of molecules to synthesize oligomers with meta-meta motifs via direct carbon-carbon coupling reaction. Statistical results directly reveal that the occurrence of reaction type is strongly related to the initial binding configuration of DBTP molecules.
  • 加载中
    1. [1]

      Classen T., Fratesi G., Costantini G.. Templated growth of metal-organic coordination chains at surfaces[J]. Angew. Chem. Int. Ed., 2005,44:6142-6145. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Heim D., Seufert K., Auwä rter W.. Surface-assisted assembly of discrete porphyrin-based cyclic supramolecules[J]. Nano Lett., 2010,10:122-128. doi: 10.1021/nl9029994

    3. [3]

      Yang H.H., Chu Y.H., Lu C.I.. Digitized charge transfer magnitude determined by metal-organic coordination number[J]. ACS Nano, 2013,7:2814-2819. doi: 10.1021/nn4003715

    4. [4]

      Wang W.H., Shi X.Q., Wang S.Y.. Cooperative modulation of electronic structures of aromatic molecules coupled to multiple metal contacts[J]. Phys. Rev. Lett., 2013,110046802.. doi: 10.1103/PhysRevLett.110.046802

    5. [5]

      Xiang F.F., Li C., Wang Z.P.. Direct observation of copper-induced metalation of 5, 15-diphenylporphyrin on Au (111) by scanning tunneling microscopy[J]. Surf. Sci., 2015,633:46-52. doi: 10.1016/j.susc.2014.11.021

    6. [6]

      Shi Z.L., Lin N.. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au (111) surface[J]. J. Am. Chem. Soc., 2009,131:5376-5377. doi: 10.1021/ja900499b

    7. [7]

      Haq S., Hanke F., Dyer M.S.. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers[J]. J. Am. Chem. Soc., 2011,133:12031-12039. doi: 10.1021/ja201389u

    8. [8]

      Fan Q.T., Wang C.C., Han Y.. Surface-assisted organic synthesis of hyperbenzene nanotroughs[J]. Angew. Chem. Int. Ed., 2013,52:4668-4672. doi: 10.1002/anie.201300610

    9. [9]

      Lafferentz L., Eberhardt V., Dri C.. Controlling on-surface polymerization by hierarchical and substrate-directed growth[J]. Nat. Chem., 2012,4:215-220. doi: 10.1038/nchem.1242

    10. [10]

      Grill L., Dyer M., Lafferentz L.. Nano-architectures by covalent assembly of molecular building blocks[J]. Nat. Nanotechnol., 2007,2:687-691. doi: 10.1038/nnano.2007.346

    11. [11]

      Pinardi A.L., Otero G., Irurueta -, Palacio I.. Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo) dehydrogenation of heteroaromatics[J]. ACS Nano, 2013,7:3676-3684. doi: 10.1021/nn400690e

    12. [12]

      Treier M., Pignedoli C.A., Laino T.. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes[J]. Nat. Chem., 2011,3:61-67. doi: 10.1038/nchem.891

    13. [13]

      Wiengarten A., Seufert K., Auw W., rter ä. Surface-assisted dehydrogenative homocoupling of porphine molecules[J]. J. Am. Chem. Soc., 2014,136:9346-9354. doi: 10.1021/ja501680n

    14. [14]

      Sun Q., Zhang C., Li Z.W.. On-surface formation of one-dimensional polyphenylene through Bergman cyclization[J]. J. Am. Chem. Soc., 2013,135:8448-8451. doi: 10.1021/ja404039t

    15. [15]

      Xiang F.F., Lu Y., Li C.. Cyclotrimerization-induced chiral supramolecular structures of 4-ethynyltriphenylamine on Au (111) surface[J]. Chem. Eur. J., 2015,21:12978-12983. doi: 10.1002/chem.201501434

    16. [16]

      Chen S.P., Sun Y., Wan S.B., Jiang T.. Facile synthesis of a 4-anilinoquinazoline dimer by Suzuki cross-coupling reaction[J]. Chin. Chem. Lett., 2011,22:1033-1035. doi: 10.1016/j.cclet.2011.01.013

    17. [17]

      Liu C., Liu C., Li X.M., Gao Z.M., Jin Z.L.. Oxygen-promoted Pd/C-catalyzed Suzuki-Miyaura reaction of potassium aryltrifluoroborates[J]. Chin. Chem. Lett., 2016,27:631-634. doi: 10.1016/j.cclet.2015.12.022

    18. [18]

      Zhang W.S., Xu W.J., Zhang F., Qu G.R.. Synthesis of symmetrical 1, 3-diynes via tandem reaction of (Z)-arylvinyl bromides in the presence of DBU and CuI[J]. Chin. Chem. Lett., 2013,24:407-410. doi: 10.1016/j.cclet.2013.03.016

    19. [19]

      Zhou L., Xu Q.X., Jiang H.F.. Palladium-catalyzed homo-coupling of boronic acids with supported reagents in supercritical carbon dioxide[J]. Chin. Chem. Lett., 2007,18:1043-1046. doi: 10.1016/j.cclet.2007.06.023

    20. [20]

      Sun Q., Cai L.L., Ding Y.Q.. Dehydrogenative homocoupling of terminal alkenes on copper surfaces:a route to dienes[J]. Angew. Chem. Int. Ed., 2015,54:4549-4552. doi: 10.1002/anie.201412307

    21. [21]

      Sun Q., Zhang C., Kong H.H., Tan Q.G., Xu W.. On-surface aryl-aryl coupling via selective C-H activation[J]. Chem. Commun., 2014,50:11825-11828. doi: 10.1039/C4CC05482B

    22. [22]

      Bombis C., Ample F., Lafferentz L.. Single molecular wires connecting metallic and insulating surface areas[J]. Angew. Chem. Int. Ed., 2009,48:9966-9970. doi: 10.1002/anie.v48:52

    23. [23]

      Di Giovannantonio M., El Garah M., Lipton-Duffin J.. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization[J]. ACS Nano, 2013,7:8190-8198. doi: 10.1021/nn4035684

    24. [24]

      Lafferentz L., Ample F., Yu H.. Conductance of a single conjugated polymer as a continuous function of its length[J]. Science, 2009,323:1193-1197. doi: 10.1126/science.1168255

    25. [25]

      Lipton-Duffin J.A., Ivasenko O., Perepichka D.F., Rosei F.. Synthesis of polyphenylene molecular wires by surface-confined polymerization[J]. Small, 2009,5:592-597. doi: 10.1002/smll.v5:5

    26. [26]

      Wang W.H., Shi X.Q., Wang S.Y., Van Hove M.A., Lin N.. Single-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reaction[J]. J. Am. Chem. Soc., 2011,133:13264-13267. doi: 10.1021/ja204956b

    27. [27]

      Basagni A., Sedona F., Pignedoli C.A.. Molecules-oligomers-nanowiresgraphene nanoribbons:a bottom-up stepwise on-surface covalent synthesis preserving long-range order[J]. J. Am. Chem. Soc., 2015,137:1802-1808. doi: 10.1021/ja510292b

    28. [28]

      Cai J.M., Ruffieux P., Jaafar R.. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010,466:470-473. doi: 10.1038/nature09211

    29. [29]

      Talirz L., Söde H., Cai J.M.. Termini of bottom-up fabricated graphene nanoribbons[J]. J. Am. Chem. Soc., 2013,135:2060-2063. doi: 10.1021/ja311099k

    30. [30]

      Bieri M., Treier M., Cai J.M.. Porous graphenes:two-dimensional polymer synthesis with atomic precision[J]. Chem. Commun., 2009:6919-6921.  

    31. [31]

      Blunt M.O., Russell J.C., Champness N.R., Beton P.H.. Templating molecular adsorption using a covalent organic framework[J]. Chem. Commun., 2010,46:7157-7159. doi: 10.1039/c0cc01810d

    32. [32]

      Gutzler R., Walch H., Eder G.. Surface mediated synthesis of 2D covalent organic frameworks:1, 3, 5-tris (4-bromophenyl) benzene on graphite (001), Cu (111), and Ag (110)[J]. Chem. Commun., 2009:4456-4458.  

    33. [33]

      Bieri M., Nguyen M.T., Gröning O.. Two-dimensional polymer formation on surfaces:insight into the roles of precursor mobility and reactivity[J]. J. Am. Chem. Soc., 2010,132:16669-16676. doi: 10.1021/ja107947z

    34. [34]

      Shi K.J., Yuan D.W., Wang C.X.. Ullmann reaction of aryl chlorides on various surfaces and the application in stepwise growth of 2D covalent organic frameworks[J]. Org. Lett., 2016,18:1282-1285. doi: 10.1021/acs.orglett.6b00172

  • 加载中
    1. [1]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    2. [2]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    5. [5]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    8. [8]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    12. [12]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    13. [13]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    14. [14]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    15. [15]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    16. [16]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

Metrics
  • PDF Downloads(2)
  • Abstract views(853)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return