Citation: Rui Chen, Ru-Qiang Lu, Pei-Chen Shi, Xiao-Yu Cao. Corannulene derivatives for organic electronics: From molecular engineering to applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1175-1183. doi: 10.1016/j.cclet.2016.06.033 shu

Corannulene derivatives for organic electronics: From molecular engineering to applications

  • Corresponding author: Xiao-Yu Cao, xcao@xmu.edu.cn
  • Received Date: 16 May 2016
    Revised Date: 12 June 2016
    Accepted Date: 13 June 2016
    Available Online: 30 August 2016

Figures(12)

  • This paper intends to provide an overview for using corannulene derivatives in organic electronics such as organic field-effect transistors (OFETs), organic solar cells (OSCs), and organic light-emitting diodes (OLEDs). We highlight the rational design strategies, tuning molecular orbital energy levels and arrangement in single crystals of corannulenes. The topological structure and properties of corannulene make it a unique candidate for organic electronics.
  • 加载中
    1. [1]

      W.E. Barth, R.G. Lawton. Dibenzo[J]. J. Am. Chem. Soc., 1966,88:380-381. doi: 10.1021/ja00954a049

    2. [2]

      A.M. Butterfield, B. Gilomen, J.S. Siegel. Kilogram-scale production of corannulene[J]. Org. Process Res. Dev., 2012,16:664-676. doi: 10.1021/op200387s

    3. [3]

      A. Sygula. Chemistry on a half-shell: synthesis and derivatization of buckybowls[J]. Eur. J. Org. Chem., 2011:1611-1625.  

    4. [4]

      V.M. Tsefrikas, L.T. Scott. Geodesic polyarenes by flash vacuum pyrolysis[J]. Chem. Rev., 2006,106:4868-4884. doi: 10.1021/cr050553y

    5. [5]

      Y.T. Wu, J.S. Siegel. Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties[J]. Chem. Rev., 2006,106:4843-4867. doi: 10.1021/cr050554q

    6. [6]

      B.M. Schmidt, D. Lentz. Syntheses and properties of buckybowls bearing electronwithdrawing groups[J]. Chem. Lett., 2014,43:171-177. doi: 10.1246/cl.130984

    7. [7]

      J. Kang, D. Miyajima, T. Mori. A rational strategy for the realization of chaingrowth supramolecular polymerization[J]. Science, 2015,347:646-651. doi: 10.1126/science.aaa4249

    8. [8]

      F.G. Klärner, J. Panitzky, D. Preda, L.T. Scott. Modeling of supramolecular properties of molecular tweezers, clips, and bowls[J]. J. Mol. Model., 2000,6:318-327. doi: 10.1007/PL00010733

    9. [9]

      L. Kobryn, W.P. Henry, F.R. Fronczek, R. Sygula, A. Sygula. Molecular clips and tweezers with corannulene pincers[J]. Tetrahedron Lett., 2009,50:7124-7127. doi: 10.1016/j.tetlet.2009.09.177

    10. [10]

      A. Sygula, F.R. Fronczek, R. Sygula, P.W. Rabideau, M.M. Olmstead. A double concave hydrocarbon buckycatcher[J]. J. Am. Chem. Soc., 2007,129:3842-3843. doi: 10.1021/ja070616p

    11. [11]

      D. Miyajima, K. Tashiro, F. Araoka. Liquid crystalline corannulene responsive to electric field[J]. J. Am. Chem. Soc., 2009,131:44-45. doi: 10.1021/ja808396b

    12. [12]

      D. Pappo, T. Mejuch, O. Reany. Diverse functionalization of corannulene: easy access to pentagonal superstructure[J]. Org. Lett., 2009,11:1063-1066. doi: 10.1021/ol8028127

    13. [13]

      J. Kang, D. Miyajima, Y. Itoh. C5-symmetric chiral corannulenes: desymmetrization of bowl inversion equilibrium via "intramolecular" hydrogen-bonding network[J]. J. Am. Chem. Soc., 2014,139:10640-10644.

    14. [14]

      D. Bandera, K.K. Baldridge, A. Linden, R. Dorta, J.S. Siegel. Stereoselective coordination of C5-symmetric corannulene derivatives with an enantiomerically pure[J]. Angew. Chem. Int. Ed., 2011,50:865-867. doi: 10.1002/anie.201006877

    15. [15]

      L.T. Scott, E.A. Jackson, Q.Y. Zhang. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis[J]. J. Am. Chem. Soc., 2012,134:107-110. doi: 10.1021/ja209461g

    16. [16]

      A. Ueda, K. Ogasawara, S. Nishida. Air-stable curved ü-radical based on corannulene: dynamic electronic-spin structure induced by temperature-dependent conformational changes[J]. Aust. J. Chem., 2010,63:1627-1633. doi: 10.1071/CH10280

    17. [17]

      A. Ueda, K. Ogasawara, S. Nishida. A bowl-shaped ortho-semiquinone radical anion: quantitative evaluation of the dynamic behavior of structural and electronic features[J]. Angew. Chem. Int. Ed., 2010,49:6333-6337. doi: 10.1002/anie.201002626

    18. [18]

      Y. Morita, A. Ueda, S. Nishida. Curved aromaticity of a corannulene-based neutral radical: crystal structure and 3 D unbalanced delocalization of spin[J]. Angew. Chem. Int. Ed., 2008,47:2035-2038. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      A. Ueda, S. Nishida, K. Fukui. Three-dimensional intramolecular exchange interaction in a curved and nonalternant ü-conjugated system: corannulene with two phenoxyl radicals[J]. Angew. Chem. Int. Ed., 2010,49:1678-1682. doi: 10.1002/anie.200906666

    20. [20]

      Y. Morita, S. Nishida, T. Kobayashi. The first bowl-shaped stable neutral radical with a corannulene system: synthesis and characterization of the electronic structure[J]. Org. Lett., 2004,6:1397-1400. doi: 10.1021/ol0497786

    21. [21]

      A.V. Zabula, A.S. Filatov, S.N. Spisak, A.Y. Rogachev, M.A. Petrukhina. A main group metal sandwich: five lithium cations jammed between two corannulene tetraanion decks[J]. Science, 2011,333:1008-1011. doi: 10.1126/science.1208686

    22. [22]

      R.Q. Lu, Y.N. Zhou, X.Y. Yan. Thiophene-fused bowl-shaped polycyclic aromatics with a dibenzo[J]. Chem. Commun., 2015,51:1681-1684. doi: 10.1039/C4CC08451A

    23. [23]

      R. Chen, R.Q. Lu, K. Shi. Corannulene derivatives with low LUMO levels and dense convex-concave packing for n-channel organic field-effect transistors[J]. Chem. Commun., 2015,51:13768-13771. doi: 10.1039/C5CC03550C

    24. [24]

      R.Q. Lu, Y.Q. Zheng, Y.N. Zhou. Corannulene derivatives as non-fullerene acceptors in solution-processed bulk heterojunction solar cells[J]. J. Mater. Chem. A, 2014,2:20515-20519. doi: 10.1039/C4TA05310A

    25. [25]

      R.Q. Lu, W. Xuan, Y.Q. Zheng. A corannulene-based donor-acceptor polymer for organic field-effect transistors[J]. RSC Adv., 2014,4:56749-56755. doi: 10.1039/C4RA11824C

    26. [26]

      K. Shi, T. Lei, X.Y. Wang, J.Y. Wang, J. Pei. A bowl-shaped molecule for organic fieldeffect transistors: crystal engineering and charge transport switching by oxygen doping[J]. Chem. Sci., 2014,5:1041-1045. doi: 10.1039/C3SC52701H

    27. [27]

      N. Yamada, K. Ueno, J. Nishimura, Y. Okada, Corannulene compound and organic light-emitting device, 20070049779.

    28. [28]

      K.K. Baldridge, J.S. Siegel. Corannulene-based fullerene fragments C20H10-C50H10: when does a buckybowl become a buckytube?[J]. Theor. Chem. Acc., 1997,97:67-71. doi: 10.1007/s002140050238

    29. [29]

      F.J. Lovas, R.J. McMahon, J.U. Grabow. Interstellar chemistry: a strategy for detecting polycyclicaromatic hydrocarbons in space[J]. J. Am. Chem. Soc., 2005,127:4345-4350. doi: 10.1021/ja0426239

    30. [30]

      J.C. Hanson, C.E. Nordman. The crystal and molecular structure of corannulene, C20H10[J]. Acta Crystallogr. Sect. B, 1976,32:1147-1153. doi: 10.1107/S0567740876012430

    31. [31]

      C. Bruno, R. Benassi, A. Passalacqua. Electrochemical and theoretical investigation of corannulene reduction processes[J]. J. Phys. Chem. B, 2009,113:1954-1962.  

    32. [32]

      J. Hölzl, F.K. Schulte. Work function of metals, in: J. Hölzl, F.K. Schulte, H. Wagner (Eds.), Solid Surface Physics,[J]. Springer, Berlin/Heidelberg, 1979:1-150.  

    33. [33]

      Y.T. Wu, J.S. Siegel. Synthesis, structures, physical properties of aromatic molecular-bowl hydrocarbons, in: J.S. Siegel, Y.T. Wu (Eds.), Polyarenes I: Topics in Current Chemistry, 349[J]. Springer, Berlin/Heidelberg, 2014:63-120.  

    34. [34]

      X. Li, F.Y. Kang, M. Inagaki. Buckybowls: corannulene and its derivatives[J]. Small, 2016,12:3206-3223. doi: 10.1002/smll.v12.24

    35. [35]

      L. Zhang, Y. Cao, N.S. Colella. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications[J]. Acc. Chem. Res., 2015,48:500-509. doi: 10.1021/ar500278w

    36. [36]

      J.E. Anthony. Functionalized acenes and heteroacenes for organic electronics[J]. Chem. Rev., 2006,106:5028-5048. doi: 10.1021/cr050966z

    37. [37]

      H. Boedigheimer, G.M. Ferrence, T.D. Lash. Porphyrin on a half-shell. Synthesis and characterization of corannulenoporphyrins[J]. J. Org. Chem., 2010,75:2518-2527. doi: 10.1021/jo902592u

    38. [38]

      K. Ota, T. Tanaka, A. Osuka. meso-ü dibenzo[a,g]corannulene-fused porphyrins[J]. Org. Lett., 2014,16:2974-2977. doi: 10.1021/ol501115m

    39. [39]

      T.C. Wu, H.J. Hsin, M.Y. Kuo, C.H. Li, Y.T. Wu. Synthesis and structural analysis of a highly curved buckybowl containing corannulene and sumanene fragments[J]. J. Am. Chem. Soc., 2011,133:16319-16321. doi: 10.1021/ja2067725

    40. [40]

      M.K. Chen, H.J. Hsin, T.C. Wu. Highly curved bowl-shaped fragments of fullerenes: synthesis, structural analysis, and physical properties[J]. Chem. Eur. J., 2014,20:598-608. doi: 10.1002/chem.v20.2

    41. [41]

      A.K. Dutta, A. Linden, L. Zoppi, K.K. Baldridge, J.S. Siegel. Extended corannulenes: aromatic bowl/sheet hybridization[J]. Angew. Chem. Int. Ed., 2015,54:10792-10796. doi: 10.1002/anie.201503553

    42. [42]

      V. Kapko, D.A. Drabold, M.F. Thorpe. Electronic structure of a realistic model of amorphous graphene[J]. Phys. Status Solidi B, 2010,247:1197-1200.  

    43. [43]

      A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. The electronic properties of graphene[J]. Rev. Mod. Phys., 2009,81:109-162. doi: 10.1103/RevModPhys.81.109

    44. [44]

      M.E. Belowich, J.F. Stoddart. Dynamic imine chemistry[J]. Chem. Soc. Rev., 2012,41:2003-2024. doi: 10.1039/c2cs15305j

    45. [45]

      S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K.M. Sanders, J.F. Stoddart. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41:898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    46. [46]

      J.M. Lehn. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry[J]. Chem. Soc. Rev., 2007,36:151-160. doi: 10.1039/B616752G

    47. [47]

      M.N. Eliseeva, L.T. Scott. Pushing the Ir-catalyzed C-H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility[J]. J. Am. Chem. Soc., 2012,134:15169-15172. doi: 10.1021/ja307547j

    48. [48]

      S. Da Ros, A. Linden, K.K. Baldridge, J.S. Siegel. Boronic esters of corannulene: potential building blocks toward icosahedral supramolecules[J]. Org. Chem. Front., 2015,2:626-633. doi: 10.1039/C5QO00009B

    49. [49]

      K. Kawasumi, Q.Y. Zhang, Y. Segawa. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects[J]. Nat. Chem., 2013,5:739-744. doi: 10.1038/nchem.1704

    50. [50]

      K. Kato, Y. Segawa, L.T. Scott, K. Itami. Synthesis, properties, and packing structures of corannulene-based ü-systems containing heptagons[J]. Chem. Asian J., 2015,10:1635-1639. doi: 10.1002/asia.v10.8

    51. [51]

      X.W. Wang, G.Z. Sun, P. Routh. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014,43:7067-7098. doi: 10.1039/C4CS00141A

    52. [52]

      M.D. Tzirakis, M. Orfanopoulos. radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology[J]. Chem. Rev., 2013,113:5262-5321. doi: 10.1021/cr300475r

    53. [53]

      O. Vostrowsky, A. Hirsch. Heterofullerenes[J]. Chem. Rev., 2006,106:5191-5207. doi: 10.1021/cr050561e

    54. [54]

      B. Sun, W. Hong, Z.Q. Yan, H. Aziz, Y.N. Li. Record high electron mobility of 6.3 cm2 V-1 s-1 achieved for polymer semiconductors using a new building block[J]. Adv. Mater., 2014,26:2636-2642. doi: 10.1002/adma.v26.17

    55. [55]

      J.Y. Huang, Z.P. Mao, Z.H. Chen. Diazaisoindigo-based polymers with highperformance charge-transport properties: from computational screening to experimental characterization[J]. Chem. Mater., 2016,28:2209-2218. doi: 10.1021/acs.chemmater.6b00154

    56. [56]

      U. Purushotham, G.N. Sastry. Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors[J]. Phys. Chem. Chem. Phys., 2013,15:5039-5048. doi: 10.1039/c3cp44673e

    57. [57]

      A. Reisi-Vanani, L. Alihoseini. Computational investigation of the adsorption of molecular hydrogen on the nitrogen-doped corannulene as a carbon nano-structure[J]. Surf. Sci., 2014,621:146-151. doi: 10.1016/j.susc.2013.11.012

    58. [58]

      V.M. Tsefrikas, S. Arns, P.M. Merner. Benzo[a]acecorannulene: surprising formation of a new bowl-shaped aromatic hydrocarbon from an attempted synthesis of 1,2-diazadibenzo[d,m]corannulene[J]. Org. Lett., 2006,8:5195-5198. doi: 10.1021/ol061554v

    59. [59]

      M. Yamaji, K. Takehira, T. Mikoshiba. Photophysical and photochemical properties of corannulenes studied by emission and optoacoustic measurements, laser flash photolysis and pulse radiolysis[J]. Chem. Phys. Lett., 2006,425:53-57. doi: 10.1016/j.cplett.2006.04.104

    60. [60]

      I.V. Kuvychko, S.N. Spisak, Y.S. Chen. A buckybowl with a lot of potential: C5-C20H5(CF3)5[J]. Angew. Chem. Int. Ed., 2012,51:4939-4952. doi: 10.1002/anie.v51.20

    61. [61]

      B.M. Schmidt, S. Seki, B. Topolinski. Electronic properties of trifluoromethylated corannulenes[J]. Angew. Chem. Int. Ed., 2012,51:11385-11388. doi: 10.1002/anie.201205757

    62. [62]

      B.M. Schmidt, B. Topolinski, P. Roesch, D. Lentz. Electron-poor N-substituted imide-fused corannulenes[J]. Chem. Commun., 2012,48:6520-6522. doi: 10.1039/c2cc32643d

    63. [63]

      Y.L. Wu, M.C. Stuparu, C. Boudon. Structural, optical, and electrochemical properties of three-dimensional push-pull corannulenes[J]. J. Org. Chem., 2012,77:11014-11026. doi: 10.1021/jo302217n

    64. [64]

      I.V. Kuvychko, C. Dubceac, S.H.M. Deng. C20H4(C4F8)3: a fluorine-containing annulated corannulene that is a better electron acceptor than C60[J]. Angew. Chem. Int. Ed., 2013,52:7505-7508. doi: 10.1002/anie.201300796

    65. [65]

      B.M. Schmidt, B. Topolinski, M. Yamada. Fluorinated and trifluoromethylated corannulenes[J]. Chem. Eur. J., 2013,19:13872-13880. doi: 10.1002/chem.201301910

    66. [66]

      R. Di Pietro, H. Sirringhaus. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors[J]. Adv. Mater., 2012,24:3367-3372. doi: 10.1002/adma.v24.25

    67. [67]

      B.A. Jones, A. Facchetti, M.R. Wasielewski, T.J. Marks. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport[J]. J. Am. Chem. Soc., 2007,129:15259-15278. doi: 10.1021/ja075242e

    68. [68]

      J. Zaumseil, H. Sirringhaus. Electron and ambipolar transport in organic fieldeffect transistors[J]. Chem. Rev., 2007,107:1296-1323. doi: 10.1021/cr0501543

    69. [69]

      A.J. Heeger. Semiconducting polymers: the third generation[J]. Chem. Soc. Rev., 2010,39:2354-2371. doi: 10.1039/b914956m

    70. [70]

      J.D. Yuen, F. Wudl. Strong acceptors in donor-acceptor polymers for high performance thin film transistors[J]. Energy Environ. Sci., 2013,6:392-406. doi: 10.1039/c2ee23505f

    71. [71]

      H. Sirringhaus. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon[J]. Adv. Mater., 2014,26:1319-1335. doi: 10.1002/adma.201304346

    72. [72]

      A.J. Heeger. 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation[J]. Adv. Mater., 2014,26:10-28. doi: 10.1002/adma.201304373

    73. [73]

      A.R. Mohebbi, J. Yuen, J. Fan. Emeraldicene as an acceptor moiety: balancedmobility,ambipolar,organicthin-filmtransistors[J]. Adv.Mater., 2011,23:4644-4648. doi: 10.1002/adma.201102726

    74. [74]

      J.L. Jellison, C.H. Lee, X.J. Zhu. Electron acceptors based on an all-carbon donor-acceptor copolymer[J]. Angew. Chem. Int. Ed., 2012,51:12321-12324. doi: 10.1002/anie.v51.49

    75. [75]

      M.C. Stuparu. Rationally designed polymer hosts of fullerene[J]. Angew. Chem. Int. Ed., 2013,52:7786-7790. doi: 10.1002/anie.v52.30

    76. [76]

      B. He, A.B. Pun, D. Zherebetskyy. New form of an old natural dye: bayannulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors[J]. J. Am. Chem. Soc., 2014,136:15093-15101. doi: 10.1021/ja508807m

    77. [77]

      M. Yanney, F.R. Fronczek, A. Sygula. A 2:1 receptor/C60 complex as a nanosized universal joint[J]. Angew. Chem. Int. Ed., 2015,54:11153-11156. doi: 10.1002/anie.201505327

    78. [78]

      J.B. You, L.T. Dou, K. Yoshimura. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commun., 2013,41446. doi: 10.1038/ncomms2411

    79. [79]

      W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater., 2005,15:1617-1622. doi: 10.1002/(ISSN)1616-3028

    80. [80]

      W.C. Zhao, D.P. Qian, S.Q. Zhang. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv. Mater., 2016,28:4734-4739. doi: 10.1002/adma.v28.23

    81. [81]

      J. Mack, P. Vogel, D. Jones, N. Kavala, A. Sutton. The development of corannulenebased blue emitters[J]. Org. Biomol. Chem., 2007,5:2448-2452. doi: 10.1039/b705621d

    82. [82]

      Y.T. Wu, D. Bandera, R. Maag. Multiethynyl corannulenes: synthesis, structure, and properties[J]. J. Am. Chem. Soc., 2008,130:10729-10739. doi: 10.1021/ja802334n

    83. [83]

      L. Zoppi, L. Martin-Samos, K.K. Baldridge. Effect of molecular packing on corannulene-based materials electroluminescence[J]. J. Am. Chem. Soc., 2011,133:14002-14009. doi: 10.1021/ja2040688

    84. [84]

      W.C. Chen, C.S. Lee, Q.X. Tong. Blue-emitting organic electrofluorescence materials: progress and prospective[J]. J. Mater. Chem. C, 2015,3:10957-10963. doi: 10.1039/C5TC02420J

    85. [85]

      P. Kordt, J.J.M. van der Holst, M. Al Helwi. Modeling of organic light emitting diodes: from molecular to device properties[J]. Adv. Funct. Mater., 2015,25:1955-1971. doi: 10.1002/adfm.v25.13

    86. [86]

      D.M. Sun, Z.J. Ren, M.R. Bryce, S.K. Yan. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs)[J]. J. Mater. Chem. C, 2015,3:9496-9508. doi: 10.1039/C5TC01638J

    87. [87]

      S. Scholz, D. Kondakov, B. Lu üssem, K. Leo. Degradation mechanisms and reactions in organic light-emitting devices[J]. Chem. Rev., 2015,115:8449-8503. doi: 10.1021/cr400704v

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    5. [5]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    6. [6]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    7. [7]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    8. [8]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    11. [11]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    12. [12]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    16. [16]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    17. [17]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    18. [18]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    19. [19]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(3)
  • Abstract views(688)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return