Citation: Pan He, Xiao-Lan Qiao, Qun Qian, Hong-Xiang Li. Thieno[3,4-c]pyrrole-4, 6-dione based copolymers for high performance organic solar cells and organic field effect transistors[J]. Chinese Chemical Letters, ;2016, 27(8): 1277-1282. doi: 10.1016/j.cclet.2016.06.032 shu

Thieno[3,4-c]pyrrole-4, 6-dione based copolymers for high performance organic solar cells and organic field effect transistors

  • Corresponding author: Qun Qian, qianqun@shu.edu.cn Hong-Xiang Li, lhx@mail.sioc.ac.cn
  • Received Date: 13 May 2016
    Revised Date: 9 June 2016
    Accepted Date: 13 June 2016
    Available Online: 27 August 2016

Figures(4)

  • Donor-acceptor type copolymers have wide applications in organic field-effect transistors and organic photovoltaic devices. Thieno[3,4-c]pyrrole-4, 6-dione (TPD), as an electron-withdrawing unit, has been widely used in D-A type copolymers recently. Till now, the highest power conversion efficiency and mobility of TPD-based copolymers are over 8% and 1.0 cm2 V-1 s-1 respectively. In this review, the recent progress of TPD-based copolymers in organic solar cells and organic transistors is summarized.
  • 加载中
    1. [1]

      Z. Cai, Y. Guo, S. Yang. New donor-acceptor-donor molecules with pechmann dye as the core moiety for solution-processed good-performance organic field-effect transistors[J]. Chem. Mater., 2013,25:471-478. doi: 10.1021/cm303793g

    2. [2]

      S.S. Dharmapurikar, A. Arulkashmir, C. Das. Enhanced hole carrier transport due to increased intermolecular contacts in small molecule based field effect transistors[J]. ACS Appl. Mater. Interfaces, 2013,5:7086-7093. doi: 10.1021/am401379a

    3. [3]

      S. Xu, N. Ai, J. Heng, N. Zhao. Extended isoindigo core: synthesis and applications as solution-processable n-OFET materials in ambient conditions[J]. RSC Adv., 2015,5:8340-8344. doi: 10.1039/C4RA14072A

    4. [4]

      X. Ren, S. Jiang, M. Cha. Thiophene-bridged double D-π-A dye for efficient dye-sensitized solar cell[J]. Chem. Mater., 2012,24:3493-3499. doi: 10.1021/cm302250y

    5. [5]

      X. He, B. Gao, T.C. Hauger. Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S)[J]. ACS Appl. Mater. Interfaces, 2015,7:8188-8199. doi: 10.1021/acsami.5b01063

    6. [6]

      A. Mishra, M.K. Fischer, P. Bauerle. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules[J]. Angew. Chem. Int. Ed., 2009,48:2474-2499. doi: 10.1002/anie.v48:14

    7. [7]

      Q. Zhang, J.M. Tour. Alternating donor/acceptor repeat units in polythiophenes intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers[J]. J. Am. Chem. Soc., 1998,120:5356-5362.  

    8. [8]

      A. Pron, P. Berrouard, M. Leclerc. Thieno[J]. Macromol. Chem. Phys., 2013,214:7-16. doi: 10.1002/macp.201200549

    9. [9]

      M. Yuan, M. Chiu, S. Liu. A thieno[3, 4-c]pyrrole-4, 6-dione-based donor-acceptor polymer exhibiting high crystallinity for photovoltaic applications[J]. Macromolecule, 2010,43:6936-6938. doi: 10.1021/ma101523a

    10. [10]

      T. Umeyama, M. Oodoi, O. Yoshikawa. Synthesis and photovoltaic properties of thiophene-imide-fused thiophene alternating copolymers with different alkyl side chains[J]. J. Mater. Chem., 2011,21:12454-12461. doi: 10.1039/c1jm11531f

    11. [11]

      Q. Wu, M. Wang, X. Qiao. Thieno[J]. Macromolecules, 2013,46:3887-3894. doi: 10.1021/ma400544s

    12. [12]

      X. Guo, R.P. Ortiz, Y. Zheng. Thieno[J]. J. Am. Chem. Soc., 2011,133:13685-13697. doi: 10.1021/ja205398u

    13. [13]

      N. Zhou, A.S. Dudnik, T.I.N.G. Li. All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers[J]. J. Am. Chem. Soc., 2016,138:1240-1251. doi: 10.1021/jacs.5b10735

    14. [14]

      X. Wang, C. Gao, K. Wang. Synthesis and electronic energy-level regulation of imide-fused poly(thienoylene vinylene) derivatives[J]. Polym. Chem., 2013,51:4975-4982. doi: 10.1002/pola.v51.23

    15. [15]

      Y.R. Cheon, Y.J. Kim, J. Ha. TPD-based copolymers with strong interchain aggregation and high hole mobility for efficient bulk heterojunction solar cells[J]. Macromolecule, 2014,47:8570-8577. doi: 10.1021/ma501888z

    16. [16]

      J.W. Jung, T.P. Russell, W.H. Jo. Highly crystalline low band gap polymer based on thieno[J]. ACS Appl. Mater. Interfaces, 2015,7:13666-13674. doi: 10.1021/acsami.5b03446

    17. [17]

      W. Qing, Z. Liu, S. Yang. Modulating carrier transfer ability-linker effect on thieno[J]. RSC Adv., 2015,5:55619-55624. doi: 10.1039/C5RA08723F

    18. [18]

      Y. Zou, A. Najari, P. Berrouard. A thieno[3, 4-c]pyrrole-4, 6-dione-based copolymer for efficient solar cells[J]. J. Am. Chem. So, 2010,132:5330-5331. doi: 10.1021/ja101888b

    19. [19]

      Y. Zhang, S.K. Hau, H. Yip. Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione[J]. Chem. Mater., 2010,22:2696-2698. doi: 10.1021/cm100417z

    20. [20]

      C. Piliego, T.W. Holcombe, J.D. Douglas. Synthetic control of structural order in N-alkylthieno[J]. J. Am. Chem. Soc., 2010,132:7595-7597. doi: 10.1021/ja103275u

    21. [21]

      G. Zhang, Y. Fu, Q. Zhang. Benzo[J]. Chem. Commum., 2010,46:4997-4999. doi: 10.1039/c0cc00098a

    22. [22]

      A. Najari, S. Beaupre, P. Berrouard. Synthesis and new characterization of thieno[J]. Adv. Funct. Mater., 2011,21:718-728. doi: 10.1002/adfm.201001771

    23. [23]

      B.R. Aich, J. Lu, S. Beaupre. Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells[J]. Org. Electron., 2012,13:1736-1741. doi: 10.1016/j.orgel.2012.05.001

    24. [24]

      B. Cabanetos, A.E. Labban, J.A. Bartelt. Linear side chains in benzo[J]. J. Am. Chem. Soc., 2013,135:4656-4659. doi: 10.1021/ja400365b

    25. [25]

      K. Lu, J. Fang, H. Yan. A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1, 2-b:4, 5-b'] dithiophene and thieno[3, 4-c]pyrrole-4, 6-dione polymers via subtle chemical structure variations[J]. Org. Electro, 2013,14:2652-2661. doi: 10.1016/j.orgel.2013.07.006

    26. [26]

      C. Zhang, H. Li, J. Wang. Low-bandgap thieno[J]. J. Mater. Chem. A, 2015,3:11194-11198. doi: 10.1039/C5TA02376A

    27. [27]

      X. Hu, M. Shi, L. Zuo. Synthesis, characterization, and photovoltaic property of a low band gap polymer alternating dithienopyrrole and thienopyrroledione units[J]. Polymer, 2011,52:2559-2564. doi: 10.1016/j.polymer.2011.03.057

    28. [28]

      Y. Zhang, J. Zou, H. Yip. Conjugated polymers based on C, Si and Nbridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells[J]. J. Mater. Chem., 2011,21:3895-3902. doi: 10.1039/c0jm03927f

    29. [29]

      T. Chu, J. Lu, S. Beaupre. Bulk heterojunction solar cells using thieno[J]. J. Am. Chem. Soc., 2011,133:4250-4253. doi: 10.1021/ja200314m

    30. [30]

      T. Chu, J. Lu, S. Beaupre. Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers[J]. Adv. Funct. Mater., 2012,22:2345-2351. doi: 10.1002/adfm.v22.11

    31. [31]

      C.M. Amb, S. Chen, K.R. Graham. Dithienogermole as a fused electron donor in bulk heterojunction solar cells[J]. J. Am. Chem. Soc., 2011,133:10062-10065. doi: 10.1021/ja204056m

    32. [32]

      Z.R. Owczarczyk, W.A. Braunecker, A. Garcia. 5, 10-Dihydroindolo[3, 2-b]indole-based copolymers with alternating donor and acceptor moieties for organic photovoltaics[J]. Macromolecules, 2013,46:1350-1360. doi: 10.1021/ma301987p

    33. [33]

      T. Ikai, T. Kudo, M. Nagaki. Fine tuning of frontier orbital energy levels in dithieno[J]. Polymers, 2014,55:2139-2145. doi: 10.1016/j.polymer.2014.03.021

    34. [34]

      P. Berrouard, F. Grenier, J. Pouliot. Synthesis and characterization of 5-octylthieno[J]. Org. Lett., 2011,13:38-41. doi: 10.1021/ol1027514

    35. [35]

      X. Qiao, Q. Wu, H. Wu. High performance thin film transistors based on bithieno[J]. Polym. Chem., 2016,7:807-815. doi: 10.1039/C5PY01995H

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    5. [5]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    6. [6]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    7. [7]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    8. [8]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    11. [11]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    12. [12]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    13. [13]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    14. [14]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    15. [15]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    16. [16]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    17. [17]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    18. [18]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    19. [19]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    20. [20]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

Metrics
  • PDF Downloads(0)
  • Abstract views(682)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return