Citation: Ping-Chuan Shen, Ze-Yan Zhuang, Zu-Jin Zhao, Ben Zhong Tang. Recent advances of folded tetraphenylethene derivatives featuring through-space conjugation[J]. Chinese Chemical Letters, ;2016, 27(8): 1115-1123. doi: 10.1016/j.cclet.2016.06.031 shu

Recent advances of folded tetraphenylethene derivatives featuring through-space conjugation

Figures(12)

  • Through-space conjugated molecules are interesting building blocks for the construction of functional materials that allow multi-dimensional transport of carrier and energy. However, the well explored through-space conjugated molecules are quite limited, which defers their structure-property correlation establishment and wide-scale application. In this review, we introduce a kind of newly-emerging folded tetraphenylethene derivatives featuring through-space conjugation. Their synthesis, crystal and electronic structures, and optical properties are described, and their representative applications as bipolar charge-transporting materials in organic light-emitting diodes and as single-molecule wires in molecular devices are presented, which are anticipated to provide guidance for the further expansion of through-space conjugated systems.
  • 加载中
    1. [1]

      A. Molina-Ontoria, M. Wielopolski, J. Gebhardt. [2,2']Paracyclophane-based p-conjugated molecular wires reveal molecular-junction behavior[J]. J. Am. Chem. Soc., 2011,133:2370-2373. doi: 10.1021/ja109745a

    2. [2]

      S.T. Schneebeli, M. Kamenetska, Z. Cheng. Single-molecule conductance through multiple p-p-stacked benzene rings determined with direct electrode-to-benzene ring connections[J]. J. Am. Chem. Soc., 2011,133:2136-2139. doi: 10.1021/ja111320n

    3. [3]

      G.P. Bartholomew, G.C. Bazan. Bichromophoric paracyclophanes: models for interchromophore delocalization[J]. Acc. Chem. Res., 2001,34:30-39. doi: 10.1021/ar9901568

    4. [4]

      J. Linnanto, V.M. Helenius, J.A.I. Oksanen. Exciton interactions and femtosecond relaxation in chlorophyll a water and chlorophyll a dioxane aggregates[J]. J. Phys. Chem. A, 1998,102:4337-4349.  

    5. [5]

      T. Gensch, S.E. Braslavsky. Volume changes related to triplet formation of watersoluble porphyrins. A laser-induced optoacoustic spectroscopy (LIOAS) study[J]. J. Phys. Chem. B, 1997,101:101-108. doi: 10.1021/jp960643u

    6. [6]

      G.B. Schuster. Long-range charge transfer in DNA: transient structural distortions control the distance dependence[J]. Acc. Chem. Res., 2000,33:253-260. doi: 10.1021/ar980059z

    7. [7]

      F.D. Lewis, T.F. Wu, X.Y. Liu. Dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins with stilbenedicarboxamide linkers[J]. J. Am. Chem. Soc., 2000,122:2889-2902. doi: 10.1021/ja993689k

    8. [8]

      E. Meggers, M.E. Michel-Beyerle, B. Giese. Sequence dependent long range hole transport in DNA[J]. J. Am. Chem. Soc., 1998,120:12950-12955. doi: 10.1021/ja983092p

    9. [9]

      Y. Morisaki, T. Sawamura, T. Murakami. Synthesis of anthracene-stacked oligomers and polymer[J]. Org. Lett., 2010,12:3118-3191.  

    10. [10]

      R. Hoffmann. Interaction of orbitals through space and through bonds[J]. Acc. Chem. Res., 1971,4:1-9. doi: 10.1021/ar50037a001

    11. [11]

      S.M. Bachrach. DFT study of[2.2]-,[3.3]-, and[4.4] paracyclophanes: strain energy, conformations, and rotational barriers[J]. J. Phys. Chem. A, 2011,115:2396-2401. doi: 10.1021/jp111523u

    12. [12]

      H. Wolf, D. Leusser, R.V.J. Mads. Phase transition of[J]. Chem. Eur. J., 2014,20:7048-7053. doi: 10.1002/chem.201304972

    13. [13]

      J. Poater, P. Alemany, M. Sola. Role of electron density and magnetic couplings on the nucleus-independent chemical shift (NICS) profiles of [2.2] paracyclophane and related species[J]. J. Org. Chem., 2006,71:1700-1702. doi: 10.1021/jo052095z

    14. [14]

      G.F. Caramori, S.E. Galembeck, K.K. Laali. A computational study of[2.2] cyclophanes[J]. J. Org. Chem., 2005,70:242-3250.  

    15. [15]

      S. Mukhopadhyay, S.P. Jagtap, V. Coropceanu. p-Stacked oligo(phenylene vinylene)s based on pseudo-geminal substituted[2.2] paracyclophanes: impact of interchain geometry and interactions on the electronic properties[J]. Angew. Chem. Int. Ed., 2012,51:11629-11632. doi: 10.1002/anie.201205738

    16. [16]

      H. Dodziuk, S. Szymanski, J. Jazwinski. Structure and NMR spectra of some [2.2] paracyclophanes. The dilemma of[2.2] paracyclophane symmetry[J]. J. Phys. Chem. A, 2011,115:10638-10649. doi: 10.1021/jp205693a

    17. [17]

      G.P. Bartholomew, G.C. Bazan. Synthesis, characterization, and spectroscopy of 4,7,12,15-[2.2] paracyclophane containing donor and acceptor groups: impact of substitution patterns on through-space charge transfer[J]. J. Am. Chem. Soc., 2002,124:5183-5196. doi: 10.1021/ja0121383

    18. [18]

      L. Ferrighi, L. Frediani, E. Fossgaard. Two-photon absorption of [2.2] paracyclophane derivatives in solution: a theoretical investigation[J]. J. Chem. Phys., 2007,127244103. doi: 10.1063/1.2814168

    19. [19]

      S. Park, J.H. Heo, C.H. Cheon. A[2,2] paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:24215-24220. doi: 10.1039/C5TA08417B

    20. [20]

      M. Gon, Y. Morisaki, Y. Chujo. Optically active cyclic compounds based on planar chiral [2.2] paracyclophane: extension of the conjugated systems and chiroptical properties[J]. J. Mater. Chem. C, 2015,3:521-529. doi: 10.1039/C4TC02339K

    21. [21]

      G.D. Scholes, G. Rumbles. Excitons in nanoscale systems[J]. Nat. Mater., 2006,5:683-696. doi: 10.1038/nmat1710

    22. [22]

      J.D. Slinker, N.B. Muren, S.E. Renfrew. DNA charge transport over 34 nm[J]. Nat. Chem., 2011,3:228-233.  

    23. [23]

      T. Hirao. Conjugated systems composed of transition metals and redox-active pconjugated ligands[J]. Coord. Chem. Rev., 2002,226:81-91. doi: 10.1016/S0010-8545(01)00436-2

    24. [24]

      J. Luo, Z. Xie, J.W.Y. Lam. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001:1740-1741.  

    25. [25]

      Z. Zhao, J.W.Y. Lam, B.Z. Tang. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes[J]. J. Mater. Chem., 2012,22:23726-23740. doi: 10.1039/c2jm31949g

    26. [26]

      X. Wang, J. Hu, G. Zhang, S. Liu. Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission[J]. J. Am. Chem. Soc., 2014,136:9890-9893. doi: 10.1021/ja505278w

    27. [27]

      L. Liu, G. Zhang, J. Xiang. Fluorescence "turn on" chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties[J]. Org. Lett., 2008,10:4581-4584. doi: 10.1021/ol801855s

    28. [28]

      J. Mei, N.L. Leung, R.T. Kwok. Aggregation-induced emission: together we shine. United We Soar[J]. Chem. Rev., 2015,115:11718-11940. doi: 10.1021/acs.chemrev.5b00263

    29. [29]

      J.E. McMurry. Carbonyl-coupling reactions using low-valent titanium[J]. Chem. Rev., 1989,89:1513-1524. doi: 10.1021/cr00097a007

    30. [30]

      Z. Zhao, J.W.Y. Lam, B.Z. Tang. Self-assembly of organic luminophores with gelation-enhanced emission characteristics[J]. Soft Matter, 2013,9:4564-4579. doi: 10.1039/c3sm27969c

    31. [31]

      Z. Zhao, S. Chen, J.W.Y. Lam. Pyrene-substituted ethenes: aggregationenhanced excimer emission and highly efficient electroluminescence[J]. J. Mater. Chem., 2011,217210. doi: 10.1039/c0jm04449k

    32. [32]

      J. Zhou, Z. Chang, Y. Jiang. From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues[J]. Chem. Commun., 2013,49:2491-2493. doi: 10.1039/c3cc00010a

    33. [33]

      Z. Zhao, B. He, H. Nie. Stereoselective synthesis of folded luminogens with arene-arene stacking interactions and aggregation-enhanced emission[J]. Chem. Commun., 2014,50:1131-1133. doi: 10.1039/C3CC47696K

    34. [34]

      D. Sun, S.V. Rosokha, J.K. Kochi. Through-space (cofacial) p-delocalization among multiple aromatic centers: toroidal conjugation in hexaphenylbenzene-like radical cations[J]. Angew. Chem. Int. Ed., 2005,44:5133-5136. doi: 10.1002/(ISSN)1521-3773

    35. [35]

      Y. Morisaki, N. Kawakami, T. Nakano. Energy-transfer properties of a [2.2] paracyclophane-based through-space dimer[J]. Chem. Eur. J., 2013,19:17715-17718. doi: 10.1002/chem.201303108

    36. [36]

      S.M. Mathew, J.T. Engle, C.J. Ziegler. The role of arene-arene interactions in the folding of ortho-phenylenes[J]. J. Am. Chem. Soc., 2013,135:6714-6722. doi: 10.1021/ja4026006

    37. [37]

      C.A. Hunter, J.K.M. Sanders. The nature of p-p interactions[J]. J. Am. Chem. Soc., 1990,112:5525-5534. doi: 10.1021/ja00170a016

    38. [38]

      H. Lu, J. Mack, Y. Yang. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chem. Soc. Rev., 2014,43:4778-4823. doi: 10.1039/c4cs00030g

    39. [39]

      A. Loudet, K. Burgess. BODIPY dyes and their derivatives: syntheses and spectroscopic properties[J]. Chem. Rev., 2007,107:4891-4932. doi: 10.1021/cr078381n

    40. [40]

      S.R. Trenor, A.R. Shultz, B.J. Love. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds[J]. Chem. Rev., 2004,104:3059-3078. doi: 10.1021/cr030037c

    41. [41]

      S. Maiti, N. Park, J.H. Han. Gemcitabine-coumarin-biotin conjugates: a target specific theranostic anticancer prodrug[J]. J. Am. Chem. Soc., 2013,135:4567-4572. doi: 10.1021/ja401350x

    42. [42]

      M. Beija, C.A. Afonso, J.M. Martinho. Synthesis and applications of rhodamine derivatives as fluorescent probes[J]. Chem. Soc. Rev., 2009,38:2410-2433. doi: 10.1039/b901612k

    43. [43]

      Y.Q. Sun, J. Liu, X. Lv. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes[J]. Angew. Chem. Int. Ed., 2012,51:7634-7636. doi: 10.1002/anie.201202264

    44. [44]

      Y. Zhou, Y. Xiao, S. Chi. Isomeric boron-fluorine complexes with donoracceptor architecture: strong solid/liquid fluorescence and large stokes shift[J]. Org. Lett., 2008,10:633-636. doi: 10.1021/ol702963w

    45. [45]

      M. Jia, X. Ma, L. Yan. Photophysical properties of intramolecular charge transfer in two newly synthesized tribranched donor-p-acceptor chromophores[J]. J. Phys. Chem. A, 2010,114:7345-7352. doi: 10.1021/jp1032355

    46. [46]

      B. He, H. Nie, L. Chen. High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, p-stacked oligo-pphenylenes[J]. Org. Lett., 2015,17:6174-6177. doi: 10.1021/acs.orglett.5b03152

    47. [47]

      Z. Zhao, J.W.Y. Lam, C.Y. Chan. Stereoselective synthesis, efficient light emission, and high bipolar charge mobility of chiasmatic luminogens[J]. Adv. Mater., 2011,23:5430-5435. doi: 10.1002/adma.201102804

    48. [48]

      Y. Xing, T.H. Park, R. Venkatramani. Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers[J]. J. Am. Chem. Soc., 2010,132:7946-7956. doi: 10.1021/ja909559m

    49. [49]

      C.R. Arroyo, S. Tarkuc, R. Frisenda. Signatures of quantum interference effects on charge transport through a single benzene ring[J]. Angew. Chem. Int. Ed., 2013,52:3152-3155. doi: 10.1002/anie.201207667

    50. [50]

      A. Batra, G. Kladnik, H. Vázquez. Quantifying through-space charge transfer dynamics in p-coupled molecular systems[J]. Nat. Commun., 2012,31086. doi: 10.1038/ncomms2083

    51. [51]

      D.S. Seferos, A.S. Blum, J.G. Kushmerick. Single-molecule charge-transport measurements that reveal technique-dependent perturbations[J]. J. Am. Chem. Soc., 2006,128:11260-11267. doi: 10.1021/ja062898j

    52. [52]

      L. Chen, Y.H. Wang, B. He. Multichannel conductance of folded singlemolecule wires aided by through-space conjugation[J]. Angew. Chem. Int. Ed., 2015,54:4231-4235. doi: 10.1002/anie.201411909

    53. [53]

      J.R. Quinn, F.W. Foss Jr., L. Venkataraman. Oxidation potentials correlate with conductivities of aromatic molecular wires[J]. J. Am. Chem. Soc., 2007,129:12376-12377. doi: 10.1021/ja0745097

    54. [54]

      A. Nitzan. Electron transmission through molecules and molecular interfaces[J]. Annu. Rev. Phys. Chem., 2001,52:681-750. doi: 10.1146/annurev.physchem.52.1.681

  • 加载中
    1. [1]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    2. [2]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    3. [3]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    6. [6]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    7. [7]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    8. [8]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    9. [9]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    10. [10]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    11. [11]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    14. [14]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    15. [15]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    16. [16]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    17. [17]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    18. [18]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

Metrics
  • PDF Downloads(2)
  • Abstract views(674)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return