Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton
- Corresponding author: Feng Li, lifeng01@jlu.edu.cn
Citation: Ablikim Obold, Ming Zhang, Feng Li. Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton[J]. Chinese Chemical Letters, ;2016, 27(8): 1345-1349. doi: 10.1016/j.cclet.2016.06.030
C.W. Tang, S. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799
(a) Y. Cao, I.D. Park, G. Yu, et al., Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature 397(1999) 414-417; (b) Z. Shuai, D. Beljonne, R.J. Silbey, et al., Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes, Phys. Rev. Lett. 84(2000) 131-134; (c) Y.R. Sun,N.C. Giebink, H.Kanno,etal.,Managementof singlet andtriplet excitons for efficient white organic light-emitting devices, Nature 440(2006) 908-912; (d) Y.T. Tao, C.L. Yang, J.G. Qin, Organic host materials for phosphorescent organic light-emitting diodes, Chem. Soc. Rev. 40(2011) 2943-2970; (e) B.H. Zhang, G.P. Tan, C.S. Lam, et al., high-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex, Adv. Mater. 24(2012) 1873-1877; (f) M.R. Zhu, C.L. Yang, Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes, Chem. Soc. Rev. 42(2013) 4963-4976; (g) T.H. Han, Y. Lee, M.R. Choi, et al., Extremely efficient flexible organic lightemitting diodes with modified graphene anode, Nat. Photonics 6(2012) 105-110; (h) M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 403(2000) 750-753; (i) J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device, Science 267(1995) 1332-1334.
(a) M.A. Baldo, D.F. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154; (b) Y.G. Ma, H.Y. Zhang, J.C. Shen, et al., Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (c) C. Adachi, M.A. Baldo, M.E. Thompson, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90(2001) 5048-5051; (d) K. Li, G.S.M. Tong, Q.Y. Wan, et al., Highly phosphorescent platinum(II) emitters:photophysics, materials and biological applications, Chem. Sci. 7(2016) 1653-1673.
(a) A. Endo, M. Ogasawara, A. Takahashi, et al., Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes a novel mechanism for electroluminescence, Adv. Mater. 21(2009) 4802-4806; (b) Q.S. Zhang, J. Li, K. Shizu, et al., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc. 134(2012) 14706-14709; (c) H. Uoyama, K. Goushi, K. Shizu, et al., Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492(2012) 234-238.
(a) J. Kido, Y. Iizumi, Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 73(1998); (b) C.J. Chiang, A. Kimyonok, M.K. Etherington, et al., Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater. 23(2013) 739-746; (c) B.H. Wallikewitz, D. Kabra, S. Gélinas, et al., Triplet dynamics in fluorescent polymer light-emitting diodes, Phys. Rev. B 85(2012) 045209.
(a) W.J. Li, D.D. Liu, F.Z. Shen, et al., A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater. 22(2012) 2797-2803; (b) W.J. Li, Y.Y. Pan, R. Xiao, et al., Employing 100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state, Adv. Funct. Mater. 24(2014) 1609-1614; (c) L. Yao, S.T. Zhang, R. Wang, et al., Highly efficient near-infrared organic lightemitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons, Angew. Chem. 126(2014) 2151-2155.
A. Obolda, Q.M. Peng, C.Y. He. Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs[J]. Adv. Mater., 2016,28:4740-4746. doi: 10.1002/adma.v28.23
(a) F. Li, A kind of OLEDs based on the transition of doublet electron of neutral pi radicals, Chinese Patent ZL201410018393.9(01/2014). (b) QM. Peng, A. Obolda, M. Zhang, et al., Organic light-emitting diodes using a neutral π-radical as emitter: the emission from a doublet, Angew. Chem. Int. Ed. 54(2015) 7091-7095.
M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford, 1999.
(a) S.O. Jeon, K.S. Yook, C.W. Joo, et al., High-efficiency deep-blue-phosphorescent organic light-emitting diodes using a phosphine oxide and a phosphine sulfide high-triplet-energy host material with bipolar charge-transport properties, Adv. Mater. 22(2010) 1872-1876; (b) S. Schmidbauer, A. Hohenleutner, B. König, Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials, Adv. Mater. 25(2013) 2114-2129; (c) S.L. Gong, Y.H. Chen, C.L. Yang, et al., De Novo design of silicon-bridged molecule towards a bipolar host: all-phosphor white organic light-emitting devices exhibiting high efficiency and low efficiency roll-off, Adv. Mater. 22(2010) 5370-5373.
V. Jankus, E.W. Snedden, D.W. Bright. Energy upconversion via triplet fusion in super yellow PPV films doped with palladium tetraphenyltetrabenzoporphyrin: a comprehensive investigation of exciton dynamics[J]. Adv. Funct. Mater., 2013,23:384-393. doi: 10.1002/adfm.201201284
(a) H. Wang, L. Xie, Q. Peng, et al., Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs, Adv. Mater. 26(2014) 5198-5204; (b) Y. Tao, K. Yuan, T. Chen, et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics, Adv. Mater. 26(2014) 7931-7958.
(a) K. Masui, H. Nakanotani, C. Adachi, Analysis of exciton annihilation in highefficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence, Org. Electron. 14(2013) 2721-2726; (b) T. Komino, H. Nomura, T. Koyanagi, et al., Suppression of efficiency roll-off characteristics in thermally activated delayed fluorescence based organic lightemitting diodes using randomly oriented host molecules, Chem. Mater. 25(2013) 3038-3047.
(a) L. Yao, B. Yang, Y.G. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics, Sci. China Chem. 57(2014) 335-345; (b) Y.Y. Pan, W.J. Li, S.T. Zhang, et al., High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons, Adv. Opt. Mater. 2(2014) 510-515.
V. Gamero, D. Velasco, S. Latorre. [4-(N-Carbazolyl)-2,6-dichlorophenyl] bis (2,4,6-trichlorophenyl) methyl radical an efficient red light-emitting paramagnetic molecule[J]. Tetrahedron Lett, 2006,47:2305-2309. doi: 10.1016/j.tetlet.2006.02.022
P. Chen, Z.H. Xiong, Q.M. Peng. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplet-triplet annihilation?[J]. Adv. Opt. Mater., 2014,2:142-148. doi: 10.1002/adom.201300422
M. Gomberg. An Instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900,22:757-771. doi: 10.1021/ja02049a006
C.J. Hawker, A.W. Bosman, E. Harth. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chem. Rev., 2001,101:3661-3688. doi: 10.1021/cr990119u
J. Joseph, B. Kalyanaraman, J.S. Hyde. Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation[J]. Biochem. Biophys. Res. Commun., 1993,192:926-934. doi: 10.1006/bbrc.1993.1504
M. Ballester. Inert free-radicals (IFR): a unique trivalent carbon species[J]. Acc. Chem. Res., 1985,18:380-387. doi: 10.1021/ar00120a004
(a) M. Ballester, J. Riera-Figueras, A. Rodríguez-Siurana, Synthesis and isolation of a perchlorotriphenylcarbonium salt, Tetrahedron Lett. 11(1970) 3615-3618; (b) M. Ballester, G. de la Fuente, Synthesis and isolation of a perchlorotriphenylcarbanion salt, Tetrahedron Lett. 11(1970) 4509-4510; (c) M. Ballester, J. Riera, J. Castañer, C. Badía, J.M. Monsó, Inert carbon free radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl radical series, J. Am. Chem. Soc. 93(1971) 2215-2225.
V.D. Sholle, E.G. Rozantsev. Advances in the chemistry of stable hydrocarbon radicals[J]. Russ. Chem. Rev., 1973,42:1011-1019. doi: 10.1070/RC1973v042n12ABEH002781
(a) J.M. Rawson, A. Alberola, A. Whalley, Thiazyl radicals: old materials for new molecular devices, J. Mater. Chem. 16(2006) 2560-2575; (b) T. Kurata, K. Koshika, F. Kato, et al., An unpaired electron-based hole-transporting molecule: triarylamine-combined nitroxide radicals, Chem. Commun. (2007) 2986-2988; (c) A.F. Marye, G. Elizabeth, C.C. Chia, Photochemistry of table free radicals: the photolysis of perchlorotriphenylmethyl radicals, J. Am. Chem. Soc. 109(1987) 7088-7094; (d) I. Ratera, C. Sporer, M.D. Ruiz, et al., Solvent tuning from normal to inverted marcus region of intramolecular electron transfer in ferrocene-based organic radicals, J. Am. Chem. Soc. 129(2007) 6117-6129; (e) V. Lloveras, J. Vidal-Gancedo, T.M. Figueira-Duarte, et al., Tunneling versus hopping in mixed-valence oligo-p-phenylenevinylene polychlorinated bis(triphenylmethyl) radical anions, J. Am. Chem. Soc. 133(2011) 5818-5833; (f) F. Vera, M. Mas-Torrent, J. Esquena, et al., Microstructured objects produced by the supramolecular hierarchical assembly of an organic free radical gathering hydrophobic-amphiphilic characteristics, Chem. Sci. 3(2012) 1958-1962; (g) J. Guasch, L. Grisanti, M. Souto, et al., Intra- and intermolecular charge transfer in aggregates of tetrathiafulvalene-triphenylmethyl radical derivatives in solution, J. Am. Chem. Soc. 135(2013) 6958-6967; (h) R. Frisenda, R. Gaudenzi, C. Franco, et al., Kondo effect in a neutral and stable all organic radical single molecule break junction, Nano Lett. 15(2015) 3109-3114; (i) S. Castellanos, F. López-Calahorra, E. Brillas, et al., All-organic discotic radical with a spin-carrying rigid-core showing intracolumnar interactions and multifunctional properties, Angew. Chem. 121(2009) 6638-6641.
J. Carilla, L. Fajarí, L. Juliá. Two functionalized free radicals of the tris(2,4,6-trichlorophenyl)methyl radical series. Synthesis, stability and EPR analysis[J]. Tetrahedron Lett., 1994,35:6529-6532. doi: 10.1016/S0040-4039(00)78264-5
D. Velasco, S. Castellanos, M. López. Red organic light-emitting radical adducts of carbazole and tris(2,4,6-trichlorotriphenyl)methyl radical that exhibit high thermal stability and electrochemical amphotericity[J]. J. Org. Chem., 2007,72:7523-7532. doi: 10.1021/jo0708846
S. Castellanos, D. Velasco, F. López-Calahorra. Taking advantage of the radical character of tris(2,4,6-trichlorophenyl)methyl to synthesize new paramagnetic glassy molecular materials[J]. J. Org. Chem., 2008,73:3759-3767. doi: 10.1021/jo702723k
(a) A. Heckmann, C. Lambert, M. Goebel, et al., Synthesis and photophysics of a neutral organic mixed-valence compound, Angew. Chem. Int. Ed. 43(2004) 5851-5856; (b) A. Heckmann, C. Lambert, Neutral organic mixed-valence compounds: synthesis and all-optical evaluation of electron-transfer parameters, J. Am. Chem. Soc. 129(2007) 5515-5527; (c) A. Heckmann, S. Dümmler, J. Pauli, et al., Highly fluorescent open-shell nir dyes: the time-dependence of back electron transfer in triarylamine-perchlorotriphenylmethyl radicals, J. Phys. Chem. C 113(2009) 20958-20966; (d) D.r. Reitzenstein, T. Quast, F. Kanal, et al., Synthesis and electron transfer characteristics of a neutral, low-band-gap, mixed-valence polyradical, Chem. Mater. 22(2010) 6641-6655; (e) A. Heckmann, C. Lambert, Organic mixed-valence compounds: a playground for electrons and holes, Angew. Chem. Int. Ed. 51(2012) 326-392.
Y. Hattori, T. Kusamoto, H. Nishihara. Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl) methyl radical[J]. Angew. Chem. Int. Ed., 2014,53:11845-11848. doi: 10.1002/anie.201407362
Y. Hattori, T. Kusamoto, H. Nishihara. Enhanced luminescent properties of an open-shell (3,5-dichloro-4-pyridyl)-bis(2,4,6-trichlorophenyl)methyl radical by coordination to gold[J]. Angew. Chem. Int. Ed., 2015,54:3731-3734. doi: 10.1002/anie.201411572
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Jiayuan Liang , Xin Mi , Songhao Guo , Hui Luo , Kejun Bu , Tonghuan Fu , Menglin Duan , Yang Wang , Qingyang Hu , Rengen Xiong , Peng Qin , Fuqiang Huang , Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Hui Peng , Xiao Wang , Weiguo Huang , Shuiyue Yu , Linghang Kong , Qilin Wei , Jialong Zhao , Bingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Supphachok Chanmungkalakul , Syed Ali Abbas Abedi , Federico J. Hernández , Jianwei Xu , Xiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375