Citation: Ablikim Obold, Ming Zhang, Feng Li. Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton[J]. Chinese Chemical Letters, ;2016, 27(8): 1345-1349. doi: 10.1016/j.cclet.2016.06.030 shu

Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton

  • Corresponding author: Feng Li, lifeng01@jlu.edu.cn
  • Received Date: 11 May 2016
    Revised Date: 2 June 2016
    Accepted Date: 6 June 2016
    Available Online: 27 August 2016

Figures(5)

  • The emission manners of organic light-emitting diodes (OLEDs) have experienced almost three-decade evolution. In this review, we briefly summarized the emission manners of OLEDs including: (i) emission from singlet exciton; (ii) emission from triplet exciton; (iii) emission from singlet exciton converted from triplet exciton. Then we introduced a new type of OLEDs with the emission from doublet exciton, wherein organic neutral radicals are used as emitters. Due to the spin-allowed transition of doublet excitons, using neutral radicals as emitters is believed to be a new way to break the 25% upper limit of internal quantum efficiency of OLEDs. The progress of emissive stable neutral radicals is also shortly reviewed.
  • 加载中
    1. [1]

      C.W. Tang, S. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799

    2. [2]

      (a) Y. Cao, I.D. Park, G. Yu, et al., Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature 397(1999) 414-417; (b) Z. Shuai, D. Beljonne, R.J. Silbey, et al., Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes, Phys. Rev. Lett. 84(2000) 131-134; (c) Y.R. Sun,N.C. Giebink, H.Kanno,etal.,Managementof singlet andtriplet excitons for efficient white organic light-emitting devices, Nature 440(2006) 908-912; (d) Y.T. Tao, C.L. Yang, J.G. Qin, Organic host materials for phosphorescent organic light-emitting diodes, Chem. Soc. Rev. 40(2011) 2943-2970; (e) B.H. Zhang, G.P. Tan, C.S. Lam, et al., high-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex, Adv. Mater. 24(2012) 1873-1877; (f) M.R. Zhu, C.L. Yang, Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes, Chem. Soc. Rev. 42(2013) 4963-4976; (g) T.H. Han, Y. Lee, M.R. Choi, et al., Extremely efficient flexible organic lightemitting diodes with modified graphene anode, Nat. Photonics 6(2012) 105-110; (h) M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 403(2000) 750-753; (i) J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device, Science 267(1995) 1332-1334. 

    3. [3]

      (a) M.A. Baldo, D.F. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154; (b) Y.G. Ma, H.Y. Zhang, J.C. Shen, et al., Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (c) C. Adachi, M.A. Baldo, M.E. Thompson, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90(2001) 5048-5051; (d) K. Li, G.S.M. Tong, Q.Y. Wan, et al., Highly phosphorescent platinum(II) emitters:photophysics, materials and biological applications, Chem. Sci. 7(2016) 1653-1673. 

    4. [4]

      (a) A. Endo, M. Ogasawara, A. Takahashi, et al., Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes a novel mechanism for electroluminescence, Adv. Mater. 21(2009) 4802-4806; (b) Q.S. Zhang, J. Li, K. Shizu, et al., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc. 134(2012) 14706-14709; (c) H. Uoyama, K. Goushi, K. Shizu, et al., Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492(2012) 234-238. 

    5. [5]

      (a) J. Kido, Y. Iizumi, Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 73(1998); (b) C.J. Chiang, A. Kimyonok, M.K. Etherington, et al., Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater. 23(2013) 739-746; (c) B.H. Wallikewitz, D. Kabra, S. Gélinas, et al., Triplet dynamics in fluorescent polymer light-emitting diodes, Phys. Rev. B 85(2012) 045209. 

    6. [6]

      (a) W.J. Li, D.D. Liu, F.Z. Shen, et al., A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater. 22(2012) 2797-2803; (b) W.J. Li, Y.Y. Pan, R. Xiao, et al., Employing 100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state, Adv. Funct. Mater. 24(2014) 1609-1614; (c) L. Yao, S.T. Zhang, R. Wang, et al., Highly efficient near-infrared organic lightemitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons, Angew. Chem. 126(2014) 2151-2155. 

    7. [7]

      A. Obolda, Q.M. Peng, C.Y. He. Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs[J]. Adv. Mater., 2016,28:4740-4746. doi: 10.1002/adma.v28.23

    8. [8]

      (a) F. Li, A kind of OLEDs based on the transition of doublet electron of neutral pi radicals, Chinese Patent ZL201410018393.9(01/2014). (b) QM. Peng, A. Obolda, M. Zhang, et al., Organic light-emitting diodes using a neutral π-radical as emitter: the emission from a doublet, Angew. Chem. Int. Ed. 54(2015) 7091-7095.

    9. [9]

      M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford, 1999.

    10. [10]

      (a) S.O. Jeon, K.S. Yook, C.W. Joo, et al., High-efficiency deep-blue-phosphorescent organic light-emitting diodes using a phosphine oxide and a phosphine sulfide high-triplet-energy host material with bipolar charge-transport properties, Adv. Mater. 22(2010) 1872-1876; (b) S. Schmidbauer, A. Hohenleutner, B. König, Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials, Adv. Mater. 25(2013) 2114-2129; (c) S.L. Gong, Y.H. Chen, C.L. Yang, et al., De Novo design of silicon-bridged molecule towards a bipolar host: all-phosphor white organic light-emitting devices exhibiting high efficiency and low efficiency roll-off, Adv. Mater. 22(2010) 5370-5373. 

    11. [11]

      V. Jankus, E.W. Snedden, D.W. Bright. Energy upconversion via triplet fusion in super yellow PPV films doped with palladium tetraphenyltetrabenzoporphyrin: a comprehensive investigation of exciton dynamics[J]. Adv. Funct. Mater., 2013,23:384-393. doi: 10.1002/adfm.201201284

    12. [12]

      (a) H. Wang, L. Xie, Q. Peng, et al., Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs, Adv. Mater. 26(2014) 5198-5204; (b) Y. Tao, K. Yuan, T. Chen, et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics, Adv. Mater. 26(2014) 7931-7958. 

    13. [13]

      (a) K. Masui, H. Nakanotani, C. Adachi, Analysis of exciton annihilation in highefficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence, Org. Electron. 14(2013) 2721-2726; (b) T. Komino, H. Nomura, T. Koyanagi, et al., Suppression of efficiency roll-off characteristics in thermally activated delayed fluorescence based organic lightemitting diodes using randomly oriented host molecules, Chem. Mater. 25(2013) 3038-3047. 

    14. [14]

      (a) L. Yao, B. Yang, Y.G. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics, Sci. China Chem. 57(2014) 335-345; (b) Y.Y. Pan, W.J. Li, S.T. Zhang, et al., High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons, Adv. Opt. Mater. 2(2014) 510-515. 

    15. [15]

      V. Gamero, D. Velasco, S. Latorre. [4-(N-Carbazolyl)-2,6-dichlorophenyl] bis (2,4,6-trichlorophenyl) methyl radical an efficient red light-emitting paramagnetic molecule[J]. Tetrahedron Lett, 2006,47:2305-2309. doi: 10.1016/j.tetlet.2006.02.022

    16. [16]

      P. Chen, Z.H. Xiong, Q.M. Peng. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplet-triplet annihilation?[J]. Adv. Opt. Mater., 2014,2:142-148. doi: 10.1002/adom.201300422

    17. [17]

      M. Gomberg. An Instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900,22:757-771. doi: 10.1021/ja02049a006

    18. [18]

      C.J. Hawker, A.W. Bosman, E. Harth. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chem. Rev., 2001,101:3661-3688. doi: 10.1021/cr990119u

    19. [19]

      J. Joseph, B. Kalyanaraman, J.S. Hyde. Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation[J]. Biochem. Biophys. Res. Commun., 1993,192:926-934. doi: 10.1006/bbrc.1993.1504

    20. [20]

      R.G. Hicks, Stable Radicals, Wiley Online Library, 2010. 

    21. [21]

      M. Ballester. Inert free-radicals (IFR): a unique trivalent carbon species[J]. Acc. Chem. Res., 1985,18:380-387. doi: 10.1021/ar00120a004

    22. [22]

      (a) M. Ballester, J. Riera-Figueras, A. Rodríguez-Siurana, Synthesis and isolation of a perchlorotriphenylcarbonium salt, Tetrahedron Lett. 11(1970) 3615-3618; (b) M. Ballester, G. de la Fuente, Synthesis and isolation of a perchlorotriphenylcarbanion salt, Tetrahedron Lett. 11(1970) 4509-4510; (c) M. Ballester, J. Riera, J. Castañer, C. Badía, J.M. Monsó, Inert carbon free radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl radical series, J. Am. Chem. Soc. 93(1971) 2215-2225. 

    23. [23]

      V.D. Sholle, E.G. Rozantsev. Advances in the chemistry of stable hydrocarbon radicals[J]. Russ. Chem. Rev., 1973,42:1011-1019. doi: 10.1070/RC1973v042n12ABEH002781

    24. [24]

      (a) J.M. Rawson, A. Alberola, A. Whalley, Thiazyl radicals: old materials for new molecular devices, J. Mater. Chem. 16(2006) 2560-2575; (b) T. Kurata, K. Koshika, F. Kato, et al., An unpaired electron-based hole-transporting molecule: triarylamine-combined nitroxide radicals, Chem. Commun. (2007) 2986-2988; (c) A.F. Marye, G. Elizabeth, C.C. Chia, Photochemistry of table free radicals: the photolysis of perchlorotriphenylmethyl radicals, J. Am. Chem. Soc. 109(1987) 7088-7094; (d) I. Ratera, C. Sporer, M.D. Ruiz, et al., Solvent tuning from normal to inverted marcus region of intramolecular electron transfer in ferrocene-based organic radicals, J. Am. Chem. Soc. 129(2007) 6117-6129; (e) V. Lloveras, J. Vidal-Gancedo, T.M. Figueira-Duarte, et al., Tunneling versus hopping in mixed-valence oligo-p-phenylenevinylene polychlorinated bis(triphenylmethyl) radical anions, J. Am. Chem. Soc. 133(2011) 5818-5833; (f) F. Vera, M. Mas-Torrent, J. Esquena, et al., Microstructured objects produced by the supramolecular hierarchical assembly of an organic free radical gathering hydrophobic-amphiphilic characteristics, Chem. Sci. 3(2012) 1958-1962; (g) J. Guasch, L. Grisanti, M. Souto, et al., Intra- and intermolecular charge transfer in aggregates of tetrathiafulvalene-triphenylmethyl radical derivatives in solution, J. Am. Chem. Soc. 135(2013) 6958-6967; (h) R. Frisenda, R. Gaudenzi, C. Franco, et al., Kondo effect in a neutral and stable all organic radical single molecule break junction, Nano Lett. 15(2015) 3109-3114; (i) S. Castellanos, F. López-Calahorra, E. Brillas, et al., All-organic discotic radical with a spin-carrying rigid-core showing intracolumnar interactions and multifunctional properties, Angew. Chem. 121(2009) 6638-6641. 

    25. [25]

      J. Carilla, L. Fajarí, L. Juliá. Two functionalized free radicals of the tris(2,4,6-trichlorophenyl)methyl radical series. Synthesis, stability and EPR analysis[J]. Tetrahedron Lett., 1994,35:6529-6532. doi: 10.1016/S0040-4039(00)78264-5

    26. [26]

      D. Velasco, S. Castellanos, M. López. Red organic light-emitting radical adducts of carbazole and tris(2,4,6-trichlorotriphenyl)methyl radical that exhibit high thermal stability and electrochemical amphotericity[J]. J. Org. Chem., 2007,72:7523-7532. doi: 10.1021/jo0708846

    27. [27]

      S. Castellanos, D. Velasco, F. López-Calahorra. Taking advantage of the radical character of tris(2,4,6-trichlorophenyl)methyl to synthesize new paramagnetic glassy molecular materials[J]. J. Org. Chem., 2008,73:3759-3767. doi: 10.1021/jo702723k

    28. [28]

      (a) A. Heckmann, C. Lambert, M. Goebel, et al., Synthesis and photophysics of a neutral organic mixed-valence compound, Angew. Chem. Int. Ed. 43(2004) 5851-5856; (b) A. Heckmann, C. Lambert, Neutral organic mixed-valence compounds: synthesis and all-optical evaluation of electron-transfer parameters, J. Am. Chem. Soc. 129(2007) 5515-5527; (c) A. Heckmann, S. Dümmler, J. Pauli, et al., Highly fluorescent open-shell nir dyes: the time-dependence of back electron transfer in triarylamine-perchlorotriphenylmethyl radicals, J. Phys. Chem. C 113(2009) 20958-20966; (d) D.r. Reitzenstein, T. Quast, F. Kanal, et al., Synthesis and electron transfer characteristics of a neutral, low-band-gap, mixed-valence polyradical, Chem. Mater. 22(2010) 6641-6655; (e) A. Heckmann, C. Lambert, Organic mixed-valence compounds: a playground for electrons and holes, Angew. Chem. Int. Ed. 51(2012) 326-392. 

    29. [29]

      Y. Hattori, T. Kusamoto, H. Nishihara. Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl) methyl radical[J]. Angew. Chem. Int. Ed., 2014,53:11845-11848. doi: 10.1002/anie.201407362

    30. [30]

      Y. Hattori, T. Kusamoto, H. Nishihara. Enhanced luminescent properties of an open-shell (3,5-dichloro-4-pyridyl)-bis(2,4,6-trichlorophenyl)methyl radical by coordination to gold[J]. Angew. Chem. Int. Ed., 2015,54:3731-3734. doi: 10.1002/anie.201411572

  • 加载中
    1. [1]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    2. [2]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    3. [3]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    4. [4]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    5. [5]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    6. [6]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    7. [7]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    10. [10]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    11. [11]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    12. [12]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    13. [13]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    14. [14]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    15. [15]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    16. [16]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    17. [17]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    18. [18]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    19. [19]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    20. [20]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

Metrics
  • PDF Downloads(3)
  • Abstract views(870)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return