Room-temperature phosphorescence from purely organic materials
- Corresponding author: Zhi-Wei Liu, zwliu@pku.edu.cn Zu-Qiang Bian, bianzq@pku.edu.cn
Citation: Yang Liu, Ge Zhan, Zhi-Wei Liu, Zu-Qiang Bian, Chun-Hui Huang. Room-temperature phosphorescence from purely organic materials[J]. Chinese Chemical Letters, ;2016, 27(8): 1231-1240. doi: 10.1016/j.cclet.2016.06.029
(a) Y. Ma, H. Zhang, J. Shen, et al., Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (b) M.A. Baldo, D. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154; (c) C. Adachi, M.A. Baldo, M.E. Thompson, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90(2001) 5048-5051.
(a) G. Zhang, G.M. Palmer, M.W. Dewhirst, et al., A dual-emissive-materials design concept enables tumour hypoxia imaging, Nat. Mater. 8(2009) 747-751; (b) Y. Han, Y. You, Y.M. Lee, et al., Double action: toward phosphorescence ratiometric sensing of chromium ion, Adv. Mater. 24(2012) 2748-2754.
(a) C.L. Lee, I.W. Hwang, C.C. Byeon, et al., Triplet exciton and polaron dynamics in phosphorescent dye blended polymer photovoltaic devices, Adv. Funct. Mater. 20(2010) 2945-2950; (b) W.A. Luhman, R.J. Holmes, Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer, Appl. Phys. Lett. 94(2009) 153304-153306.
Q. Zhao, C. Huang, F. Li. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem. Soc. Rev., 2011,40:2508-2524. doi: 10.1039/c0cs00114g
(a) Z. Liu, M. Guan, Z. Bian, et al., Red phosphorescent iridium complex containing carbazole-functionalized b-diketonate for highly efficient non-doped organic light-emitting diodes, Adv. Funct. Mater. 16(2006) 1441-1448; (b) Z. Liu, Z. Bian, L. Ming, et al., Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized b-diketonate for non-doped organic light-emitting diodes, Org. Electron. 9(2008) 171-182.
(a) Z. Liu, M.G. Helander, Z. Wang, et al., Efficient single layer RGB phosphorescent organic light-emitting diodes, Org. Electron. 10(2009) 1146-1151; (b) Z. Liu, M.G. Helander, Z. Wang, et al., Band alignment at anode/organic interfaces for highly efficient simplified blue-emitting organic light-emitting diodes, J. Phys. Chem. C 114(2010) 16746-16749; (c) Z. Liu, Z. Bian, F. Hao, et al., Highly efficient, orange-red organic light-emitting diodes using a series of green-emission iridium complexes as hosts, Org. Electron. 10(2009) 247-255; (d) Z. Liu, M. Helander, Z. Wang, et al., Efficient bilayer phosphorescent organic light-emitting diodes: direct hole injection into triplet dopants, Appl. Phys. Lett. 94(2009) 113305; (e) M. Helander, Z. Wang, J. Qiu, et al., Chlorinated indium tin oxide electrodes with high work function for organic device compatibility, Science 332(2011) 944-947; (f) Z. Liu, M.G. Helander, Z. Wang, et al., Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping, Org. Electron. 14(2013) 852-857.
(a) Z. Liu, M.F. Qayyum, C. Wu, et al., A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes, J. Am. Chem. Soc. 133(2011) 3700-3703; (b) X. Liu, T. Zhang, T. Ni, et al., Co-deposited Cu(I) Complex for tri-layered yellow and white organic light-emitting diodes, Adv. Funct. Mater. 24(2014) 5385-5392; (c) Z. Liu, J. Qiu, F. Wei, et al., Simple and high efficiency phosphorescence organic light-emitting diodes with codeposited copper(I) emitter, Chem. Mater. 26(2014) 2368-2373; (d) F. Wei, J. Qiu, X. Liu, et al., Efficient orange-red phosphorescent organic lightemitting diodes using an in situ synthesized copper(I) complex as the emitter, J. Mater. Chem. C 2(2014) 6333-6341; (e) F. Wei, T. Zhang, X. Liu, et al., Efficient non-doped organic light-emitting diodes with CuI complex emitter, Org. Electron. 15(2014) 3292-3297; (f) T. Ni, X. Liu, T. Zhang, et al., Red emissive organic light-emitting diodes based on codeposited inexpensive CuI complexes, J. Mater. Chem. C 3(2015) 5835-5843.
(a) S. Lower, M. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev. 66(1966) 199-241; (b) D.R. Kearns, W.A. Case, Investigation of singlet!triplet transitions by the phosphorescence excitation method. III. Aromatic ketones and aldehydes, J. Am. Chem. Soc. 88(1966) 5087-5097.
K. Kalyanasundaram, F. Grieser, J. Thomas. Room temperature phosphorescence of aromatic hydrocarbons in aqueous micellar solutions[J]. Chem. Phys. Lett., 1977,51:501-505. doi: 10.1016/0009-2614(77)85410-9
N.J. Turro, J.D. Bolt, Y. Kuroda. A study of the kinetics of inclusion of halonaphthalene with β-cyclodextrin via time correlated phosphorescence[J]. Photochem. Photobiol., 1982,35:69-72. doi: 10.1111/php.1982.35.issue-1
C.A. Mitchell, R.W. Gurney, S.-H. Jang. On the mechanism of matrix-assisted room temperature phosphorescence[J]. J. Am. Chem. Soc., 1998,120:9726-9727. doi: 10.1021/ja981963p
S. Reineke, M.A. Baldo. Room temperature triplet state spectroscopy of organic semiconductors[J]. Sci. Rep., 2014,43797.
H. Uoyama, K. Goushi, K. Shizu. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492:234-238. doi: 10.1038/nature11687
B.F. Plummer, L.K. Steffen. Study of geometry effects on heavy atom perturbation of the electronic properties of derivatives of the nonalternant polycyclic aromatic hydrocarbons fluoranthene and acenaphtho[J]. J. Am. Chem. Soc., 1993,115:11542-11551. doi: 10.1021/ja00077a061
R.F. Borkman, D.R. Kearns. Heavy-atom and substituent effects on S-T transitions of halogenated carbonyl compounds[J]. J. Chem. Phys., 1967,46:2333-2341. doi: 10.1063/1.1841041
A. Segura-Carretero, C. Cruces-Blanco, B. Cañabate-Díaz. Heavy-atom induced room-temperature phosphorescence: a straightforward methodology for the determination of organic compounds in solution[J]. Anal. Chim. Acta, 2000,417:19-30. doi: 10.1016/S0003-2670(00)00917-X
J. Xu, A. Takai, Y. Kobayashi. Phosphorescence from a pure organic fluorene derivative in solution at room temperature[J]. Chem. Commun., 2013,49:8447-8449. doi: 10.1039/c3cc44809f
B. Ventura, A. Bertocco, D. Braga. Luminescence properties of 1,8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: toward roomtemperature phosphorescence from organic materials[J]. J. Phys. Chem. C, 2014,118:18646-18658. doi: 10.1021/jp5049309
R.W. Troff, T. Mäkelä, F. Topić. Alternative motifs for halogen bonding[J]. Eur. J. Org. Chem., 2013,9:1617-1637.
O. Bolton, K. Lee, H.J. Kim. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat. Chem., 2011,3:205-210.
O. Bolton, D. Lee, J. Jung. Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bomobenzaldehyde/dibromobenzene mixed crystals[J]. Chem. Mater., 2014,26:6644-6649. doi: 10.1021/cm503678r
Q.J. Shen, H.Q. Wei, W.S. Zou. cocrystals assembled by pyrene and 1,2- or 1,4-diiodotetrafluorobenzenes and their phosphorescent behaviors modulated by local molecular environment[J]. CrystEngComm, 2012,14:1010-1015. doi: 10.1039/C1CE06069D
Q.J. Shen, X. Pang, X.R. Zhao. Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C-I p halogen bonding and other assisting weak interactions[J]. CrystEngComm, 2012,14:5027-5034. doi: 10.1039/c2ce25338k
H.Y. Gao, X.R. Zhao, H. Wang. Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C-I…π halogen bonding[J]. Cryst. Growth Des., 2012,12:4377-4387. doi: 10.1021/cg300515a
S. d'Agostino, F. Grepioni, D. Braga. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals[J]. Cryst. Growth Des., 2015,15:2039-2045. doi: 10.1021/acs.cgd.5b00226
D. Lee, O. Bolton, B.C. Kim. Room temperature phosphorescence of metalfree organic materials in amorphous polymer matrices[J]. J. Am. Chem. Soc., 2013,135:6325-6329. doi: 10.1021/ja401769g
M.S. Kwon, D. Lee, S. Seo. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices[J]. Angew. Chem. Int. Ed., 2014,53:11177-11181. doi: 10.1002/anie.201404490
M.S. Kwon, Y. Yu, C. Coburn. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials[J]. Nat. Commun., 2015,6:8947-8956. doi: 10.1038/ncomms9947
S. Hirata, K. Totani, J. Zhang. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions[J]. Adv. Funct. Mater., 2013,23:3386-3397. doi: 10.1002/adfm.v23.27
S. Hirata, K. Totani, H. Kajim. Reversible thermal recording media using time-dependent persistent room temperature phosphorescence[J]. Adv. Opt. Mater., 2013,1:438-442. doi: 10.1002/adom.v1.6
H. Wang, H. Wang, X. Yang. Ion-unquenchable and thermally "on-off" reversible room temperature phosphorescence of 3-bromoquinoline induced by supramolecular gels[J]. Langmuir, 2015,31:486-491. doi: 10.1021/la5040323
D. Chaudhuri, E. Sigmund, A. Meyer. Metal-free OLED triplet emitters by side-stepping Kasha's rule[J]. Angew. Chem. Int. Ed., 2013,52:13449-13452. doi: 10.1002/anie.201307601
Y. Hong, J.W. Lam, B.Z. Tang. Aggregation-induced emission: phenomenon, mechanism and applications[J]. Chem. Commun., 2009:4332-4353.
W.Z. Yuan, X.Y. Shen, H. Zhao. Crystallization-induced phosphorescence of pure organic luminogens at room temperature[J]. J. Phys. Chem. C, 2010,114:6090-6099. doi: 10.1021/jp909388y
Y. Gong, L. Zhao, Q. Peng. Crystallization-induced dual emission from metaland heavy atom-free aromatic acids and esters[J]. Chem. Sci., 2015,6:4438-4444. doi: 10.1039/C5SC00253B
M. Shimizu, A. Kimura, H. Sakaguchi. Room-temperature phosphorescence of crystalline 1,4-bis(aroyl)-2,5-dibromobenzenes[J]. Eur. J. Org. Chem., 2016,3:467-473.
Z. An, C. Zheng, Y. Tao. Stabilizing excited triplet states for ultralong organic phosphorescence[J]. Nat. Mater., 2015,14:685-690. doi: 10.1038/nmat4259
Z., Z., X.Zhang, etal.. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence[J]. Angew. Chem. Int. Ed., 2016,55:2181-2185. doi: 10.1002/anie.201509224
P. Xue, P. Wang, P. Chen, et al., Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect, Chem. Sci. (2016), http://dx.doi.org/10.1039/C5SC03739E.
Y. Gong, G. Chen, Q. Peng. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens[J]. Adv. Mater., 2015,27:6195-6201. doi: 10.1002/adma.201502442
Z. Mao, Z. Yang, Y. Mu. Linearly tunable emission colors obtained from a fluorescent-phosphorescent dual-emission compound by mechanical stimuli[J]. Angew. Chem. Int. Ed., 2015,54:6270-6273. doi: 10.1002/anie.201500426
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Dian-Xue Ma , Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Xinghong Cai , Qiang Yang , Yao Tong , Lanyin Liu , Wutang Zhang , Sam Zhang , Min Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261