Citation: Yang Liu, Ge Zhan, Zhi-Wei Liu, Zu-Qiang Bian, Chun-Hui Huang. Room-temperature phosphorescence from purely organic materials[J]. Chinese Chemical Letters, ;2016, 27(8): 1231-1240. doi: 10.1016/j.cclet.2016.06.029 shu

Room-temperature phosphorescence from purely organic materials

  • Corresponding author: Zhi-Wei Liu, zwliu@pku.edu.cn Zu-Qiang Bian, bianzq@pku.edu.cn
  • Received Date: 3 May 2016
    Revised Date: 12 June 2016
    Accepted Date: 14 June 2016
    Available Online: 29 August 2016

Figures(14)

  • Room-temperature phosphorescence (RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes. In this short review, recent progress on enhancement of RTP from purely organic materials is summarized. According to the mechanism of phosphorescence emission, two principles are discussed to construct efficient RTP materials: one is promoting intersystem crossing (ISC) efficiency by using aromatic carbonyl, heavyatom, or/and heterocycle/heteroatom containing compounds; the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states, including embedding phosphors into polymers and packing them tightly in crystals. With aforementioned strategies, RTP from purely organic materials was achieved both in fluid and rigid media.
  • 加载中
    1. [1]

      (a) Y. Ma, H. Zhang, J. Shen, et al., Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (b) M.A. Baldo, D. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154; (c) C. Adachi, M.A. Baldo, M.E. Thompson, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90(2001) 5048-5051.

    2. [2]

      (a) G. Zhang, G.M. Palmer, M.W. Dewhirst, et al., A dual-emissive-materials design concept enables tumour hypoxia imaging, Nat. Mater. 8(2009) 747-751; (b) Y. Han, Y. You, Y.M. Lee, et al., Double action: toward phosphorescence ratiometric sensing of chromium ion, Adv. Mater. 24(2012) 2748-2754.

    3. [3]

      (a) C.L. Lee, I.W. Hwang, C.C. Byeon, et al., Triplet exciton and polaron dynamics in phosphorescent dye blended polymer photovoltaic devices, Adv. Funct. Mater. 20(2010) 2945-2950; (b) W.A. Luhman, R.J. Holmes, Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer, Appl. Phys. Lett. 94(2009) 153304-153306.

    4. [4]

      Q. Zhao, C. Huang, F. Li. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem. Soc. Rev., 2011,40:2508-2524. doi: 10.1039/c0cs00114g

    5. [5]

      (a) Z. Liu, M. Guan, Z. Bian, et al., Red phosphorescent iridium complex containing carbazole-functionalized b-diketonate for highly efficient non-doped organic light-emitting diodes, Adv. Funct. Mater. 16(2006) 1441-1448; (b) Z. Liu, Z. Bian, L. Ming, et al., Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized b-diketonate for non-doped organic light-emitting diodes, Org. Electron. 9(2008) 171-182.

    6. [6]

      (a) Z. Liu, M.G. Helander, Z. Wang, et al., Efficient single layer RGB phosphorescent organic light-emitting diodes, Org. Electron. 10(2009) 1146-1151; (b) Z. Liu, M.G. Helander, Z. Wang, et al., Band alignment at anode/organic interfaces for highly efficient simplified blue-emitting organic light-emitting diodes, J. Phys. Chem. C 114(2010) 16746-16749; (c) Z. Liu, Z. Bian, F. Hao, et al., Highly efficient, orange-red organic light-emitting diodes using a series of green-emission iridium complexes as hosts, Org. Electron. 10(2009) 247-255; (d) Z. Liu, M. Helander, Z. Wang, et al., Efficient bilayer phosphorescent organic light-emitting diodes: direct hole injection into triplet dopants, Appl. Phys. Lett. 94(2009) 113305; (e) M. Helander, Z. Wang, J. Qiu, et al., Chlorinated indium tin oxide electrodes with high work function for organic device compatibility, Science 332(2011) 944-947; (f) Z. Liu, M.G. Helander, Z. Wang, et al., Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping, Org. Electron. 14(2013) 852-857.

    7. [7]

      (a) Z. Liu, M.F. Qayyum, C. Wu, et al., A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes, J. Am. Chem. Soc. 133(2011) 3700-3703; (b) X. Liu, T. Zhang, T. Ni, et al., Co-deposited Cu(I) Complex for tri-layered yellow and white organic light-emitting diodes, Adv. Funct. Mater. 24(2014) 5385-5392; (c) Z. Liu, J. Qiu, F. Wei, et al., Simple and high efficiency phosphorescence organic light-emitting diodes with codeposited copper(I) emitter, Chem. Mater. 26(2014) 2368-2373; (d) F. Wei, J. Qiu, X. Liu, et al., Efficient orange-red phosphorescent organic lightemitting diodes using an in situ synthesized copper(I) complex as the emitter, J. Mater. Chem. C 2(2014) 6333-6341; (e) F. Wei, T. Zhang, X. Liu, et al., Efficient non-doped organic light-emitting diodes with CuI complex emitter, Org. Electron. 15(2014) 3292-3297; (f) T. Ni, X. Liu, T. Zhang, et al., Red emissive organic light-emitting diodes based on codeposited inexpensive CuI complexes, J. Mater. Chem. C 3(2015) 5835-5843.

    8. [8]

      (a) S. Lower, M. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev. 66(1966) 199-241; (b) D.R. Kearns, W.A. Case, Investigation of singlet!triplet transitions by the phosphorescence excitation method. III. Aromatic ketones and aldehydes, J. Am. Chem. Soc. 88(1966) 5087-5097.

    9. [9]

      K. Kalyanasundaram, F. Grieser, J. Thomas. Room temperature phosphorescence of aromatic hydrocarbons in aqueous micellar solutions[J]. Chem. Phys. Lett., 1977,51:501-505. doi: 10.1016/0009-2614(77)85410-9

    10. [10]

      N.J. Turro, J.D. Bolt, Y. Kuroda. A study of the kinetics of inclusion of halonaphthalene with β-cyclodextrin via time correlated phosphorescence[J]. Photochem. Photobiol., 1982,35:69-72. doi: 10.1111/php.1982.35.issue-1

    11. [11]

      C.A. Mitchell, R.W. Gurney, S.-H. Jang. On the mechanism of matrix-assisted room temperature phosphorescence[J]. J. Am. Chem. Soc., 1998,120:9726-9727. doi: 10.1021/ja981963p

    12. [12]

      S. Reineke, M.A. Baldo. Room temperature triplet state spectroscopy of organic semiconductors[J]. Sci. Rep., 2014,43797.  

    13. [13]

      H. Uoyama, K. Goushi, K. Shizu. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492:234-238. doi: 10.1038/nature11687

    14. [14]

      B.F. Plummer, L.K. Steffen. Study of geometry effects on heavy atom perturbation of the electronic properties of derivatives of the nonalternant polycyclic aromatic hydrocarbons fluoranthene and acenaphtho[J]. J. Am. Chem. Soc., 1993,115:11542-11551. doi: 10.1021/ja00077a061

    15. [15]

      R.F. Borkman, D.R. Kearns. Heavy-atom and substituent effects on S-T transitions of halogenated carbonyl compounds[J]. J. Chem. Phys., 1967,46:2333-2341. doi: 10.1063/1.1841041

    16. [16]

      A. Segura-Carretero, C. Cruces-Blanco, B. Cañabate-Díaz. Heavy-atom induced room-temperature phosphorescence: a straightforward methodology for the determination of organic compounds in solution[J]. Anal. Chim. Acta, 2000,417:19-30. doi: 10.1016/S0003-2670(00)00917-X

    17. [17]

      J. Xu, A. Takai, Y. Kobayashi. Phosphorescence from a pure organic fluorene derivative in solution at room temperature[J]. Chem. Commun., 2013,49:8447-8449. doi: 10.1039/c3cc44809f

    18. [18]

      B. Ventura, A. Bertocco, D. Braga. Luminescence properties of 1,8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: toward roomtemperature phosphorescence from organic materials[J]. J. Phys. Chem. C, 2014,118:18646-18658. doi: 10.1021/jp5049309

    19. [19]

      R.W. Troff, T. Mäkelä, F. Topić. Alternative motifs for halogen bonding[J]. Eur. J. Org. Chem., 2013,9:1617-1637.  

    20. [20]

      O. Bolton, K. Lee, H.J. Kim. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat. Chem., 2011,3:205-210.  

    21. [21]

      O. Bolton, D. Lee, J. Jung. Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bomobenzaldehyde/dibromobenzene mixed crystals[J]. Chem. Mater., 2014,26:6644-6649. doi: 10.1021/cm503678r

    22. [22]

      Q.J. Shen, H.Q. Wei, W.S. Zou. cocrystals assembled by pyrene and 1,2- or 1,4-diiodotetrafluorobenzenes and their phosphorescent behaviors modulated by local molecular environment[J]. CrystEngComm, 2012,14:1010-1015. doi: 10.1039/C1CE06069D

    23. [23]

      Q.J. Shen, X. Pang, X.R. Zhao. Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C-I p halogen bonding and other assisting weak interactions[J]. CrystEngComm, 2012,14:5027-5034. doi: 10.1039/c2ce25338k

    24. [24]

      H.Y. Gao, X.R. Zhao, H. Wang. Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C-I…π halogen bonding[J]. Cryst. Growth Des., 2012,12:4377-4387. doi: 10.1021/cg300515a

    25. [25]

      S. d'Agostino, F. Grepioni, D. Braga. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals[J]. Cryst. Growth Des., 2015,15:2039-2045. doi: 10.1021/acs.cgd.5b00226

    26. [26]

      D. Lee, O. Bolton, B.C. Kim. Room temperature phosphorescence of metalfree organic materials in amorphous polymer matrices[J]. J. Am. Chem. Soc., 2013,135:6325-6329. doi: 10.1021/ja401769g

    27. [27]

      M.S. Kwon, D. Lee, S. Seo. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices[J]. Angew. Chem. Int. Ed., 2014,53:11177-11181. doi: 10.1002/anie.201404490

    28. [28]

      M.S. Kwon, Y. Yu, C. Coburn. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials[J]. Nat. Commun., 2015,6:8947-8956. doi: 10.1038/ncomms9947

    29. [29]

      S. Hirata, K. Totani, J. Zhang. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions[J]. Adv. Funct. Mater., 2013,23:3386-3397. doi: 10.1002/adfm.v23.27

    30. [30]

      S. Hirata, K. Totani, H. Kajim. Reversible thermal recording media using time-dependent persistent room temperature phosphorescence[J]. Adv. Opt. Mater., 2013,1:438-442. doi: 10.1002/adom.v1.6

    31. [31]

      H. Wang, H. Wang, X. Yang. Ion-unquenchable and thermally "on-off" reversible room temperature phosphorescence of 3-bromoquinoline induced by supramolecular gels[J]. Langmuir, 2015,31:486-491. doi: 10.1021/la5040323

    32. [32]

      D. Chaudhuri, E. Sigmund, A. Meyer. Metal-free OLED triplet emitters by side-stepping Kasha's rule[J]. Angew. Chem. Int. Ed., 2013,52:13449-13452. doi: 10.1002/anie.201307601

    33. [33]

      Y. Hong, J.W. Lam, B.Z. Tang. Aggregation-induced emission: phenomenon, mechanism and applications[J]. Chem. Commun., 2009:4332-4353.  

    34. [34]

      W.Z. Yuan, X.Y. Shen, H. Zhao. Crystallization-induced phosphorescence of pure organic luminogens at room temperature[J]. J. Phys. Chem. C, 2010,114:6090-6099. doi: 10.1021/jp909388y

    35. [35]

      Y. Gong, L. Zhao, Q. Peng. Crystallization-induced dual emission from metaland heavy atom-free aromatic acids and esters[J]. Chem. Sci., 2015,6:4438-4444. doi: 10.1039/C5SC00253B

    36. [36]

      M. Shimizu, A. Kimura, H. Sakaguchi. Room-temperature phosphorescence of crystalline 1,4-bis(aroyl)-2,5-dibromobenzenes[J]. Eur. J. Org. Chem., 2016,3:467-473.

    37. [37]

      Z. An, C. Zheng, Y. Tao. Stabilizing excited triplet states for ultralong organic phosphorescence[J]. Nat. Mater., 2015,14:685-690. doi: 10.1038/nmat4259

    38. [38]

      Z., Z., X.Zhang, etal.. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence[J]. Angew. Chem. Int. Ed., 2016,55:2181-2185. doi: 10.1002/anie.201509224

    39. [39]

      P. Xue, P. Wang, P. Chen, et al., Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect, Chem. Sci. (2016), http://dx.doi.org/10.1039/C5SC03739E.

    40. [40]

      Y. Gong, G. Chen, Q. Peng. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens[J]. Adv. Mater., 2015,27:6195-6201. doi: 10.1002/adma.201502442

    41. [41]

      Z. Mao, Z. Yang, Y. Mu. Linearly tunable emission colors obtained from a fluorescent-phosphorescent dual-emission compound by mechanical stimuli[J]. Angew. Chem. Int. Ed., 2015,54:6270-6273. doi: 10.1002/anie.201500426

  • 加载中
    1. [1]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    2. [2]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    3. [3]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    4. [4]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    5. [5]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    6. [6]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    7. [7]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    8. [8]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    9. [9]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    10. [10]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    13. [13]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    14. [14]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    15. [15]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    16. [16]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    17. [17]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    18. [18]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    19. [19]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    20. [20]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

Metrics
  • PDF Downloads(8)
  • Abstract views(993)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return