Citation: Xue-Qing Hou, Yan-Tao Sun, Lei Liu, Shi-Tao Wang, Rui-Li Geng, Xiang-Feng Shao. Bowl-shaped conjugated polycycles[J]. Chinese Chemical Letters, ;2016, 27(8): 1166-1174. doi: 10.1016/j.cclet.2016.06.028 shu

Bowl-shaped conjugated polycycles

  • Corresponding author: Xiang-Feng Shao, 
  • Received Date: 3 May 2016
    Revised Date: 6 June 2016
    Accepted Date: 29 June 2016
    Available Online: 27 August 2016

Figures(17)

  • The conjugated polycycles show excellent optical and electrical properties that are suitable for application in various organic electronics. While most of attentions have been paid to polycycles having planar π-conjugated system, the curved polycycles seem amazing due to their unique physical and chemical features. The non-planar conjugated polycycles have been created with the geometries of bracelet, saddle, bowl, Möbius band, helicenes, etc. Among them, the bowl-shaped one is of growing interest owing to the multidiscipline applications such as synthetic intermediates for end-cap of carbon nanotube, coordination with metal ions, encapsulation of fullerenes, and fabrication of electronic devices. In this paper, we summarize the recent advances on the chemistry of the bowl-shaped conjugated polycycles, particularly on their synthesis and the further chemical modifications toward organic functional materials.
  • 加载中
    1. [1]

      (a) H.L. Dong, H.F. Zhu, Q. Meng, X. Gong, W.P. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev. 41(2012) 1754-1808; (b) C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material Odyssey of organic electronics, Chem. Rev. 112(2012) 2208-2267; (c) W. Jiang, Y. Li, Z.H. Wang, Tailor-made rylene arrays for high performance nchannel semiconductors, Acc. Chem. Res. 47(2014) 3135-3147; (d) A. Narita, X.Y. Wang, X.L. Feng, K. Müllen, New advances in nanographene chemistry, Chem. Soc. Rev. 44(2015) 6616-6643; (e) T.C. Yu, L.L. Liu, Z.Q. Xie, Y.G. Ma, Progress in small-molecule luminescent materials for organic light-emitting diodes, Sci. China Chem. 58(2015) 907-915; (f) Y.Q. Zheng, J.Y. Wang, J. Pei, One-dimensional (1D) micro/nanostructures of organic semiconductors for field-effect transistors, Sci. China Chem. 58(2015) 937-946; (g) X.K. Gao, Z. Zhao, High mobility organic semiconductors for field-effect transistors, Sci. China Chem. 58(2015) 947-968.

    2. [2]

      M.M. Payne, S.R. Parkin, J.E. Anthony. Functionalized higher acenes: hexacene and heptacene[J]. J. Am. Chem. Soc., 2005,127:8028-8029. doi: 10.1021/ja051798v

    3. [3]

      R. Mondal, B.K. Shah, D.C. Neckers. Photogeneration of heptacene in a polymer matrix[J]. J. Am. Chem. Soc., 2006,128:9612-9613. doi: 10.1021/ja063823i

    4. [4]

      J.G. Mei, Y. Diao, A.L. Appleton. Integrated materials design of organic semiconductors for field-effect transistors[J]. J. Am. Chem. Soc., 2013,135:6724-6746. doi: 10.1021/ja400881n

    5. [5]

      N. Martín, L.T. Scott. Challenges in aromaticity: 150 years after Kekule ′ 's benzene[J]. Chem. Soc. Rev., 2015,44:6397-6400. doi: 10.1039/C5CS90085A

    6. [6]

      H. Omachi, Y. Segawa, K. Itami. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes[J]. Acc. Chem. Res., 2012,45:1378-1389. doi: 10.1021/ar300055x

    7. [7]

      (a) K.Y. Cheung, X.M. Xu, Q. Miao, Aromatic saddles containing two heptagons, J. Am. Chem. Soc. 137(2015) 3910-3914; (b) E. Gońka, P.J. Chmielewski, T. Lis, M. Stępień, Expanded hexapyrrolohexaazacoronenes. Near-infrared absorbing chromophores with interrupted peripheral conjugation, J. Am. Chem. Soc. 136(2014) 16399-16410.

    8. [8]

      (a) P.W. Rabideau, A. Sygula, Buckybowls: polynuclear aromatic hydrocarbons related to the buckminsterfullerene surface, Acc. Chem. Res. 29(1996) 235-242; (b) Y.T. Wu, J.S. Siegel, Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties, Chem. Rev. 106(2006) 4843-4867; (c) V.M. Tsefrikas, L.T. Scott, Geodesic polyarenes by flash vacuum pyrolysis, Chem. Rev. 106(2006) 4868-4884; (d) T. Amaya, T. Hirao, A molecular bowl sumanene, Chem. Commun. 47(2011) 10524-10535; (e) S. Higashibayashi, H. Sakurai, Synthesis of sumanene and related buckybowls, Chem. Lett. 40(2011) 122-128; (f) A. Sygula, Chemistry on a half-shell: synthesis and derivatization of buckybowls, Eur. J. Org. Chem. (2011) 1611-1625; (g) T. Amaya, T. Hirao, Chemistry of sumanene, Chem. Rec. 15(2015) 310-321.

    9. [9]

      (a) T. Higashino, B.S. Lee, J.M. Lim, D. Kim, A. Osuka, A Möbius antiaromatic complex as a kinetically controlled product in phosphorus insertion to a[32] heptaphyrin, Angew. Chem. Int. Ed. 51(2012) 13105-13108; (b) T. Higashino, J.M. Lim, T. Miura, et al., Möbius antiaromatic bisphosphorus complexes of[30] hexaphyrins, Angew. Chem. Int. Ed. 49(2010) 4950-4954; (c) M. Stępień, N. Sprutta, L. Latos-Grazyński, Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids, Angew. Chem. Int. Ed. 50(2011) 4288-4340; (d) M. Stępień, B. Szyszko, L. Latos-Grazyński, Three-level topology switching in a molecular Möbius band, J. Am. Chem. Soc. 132(2010) 3140-3152.

    10. [10]

      Y. Shen, C.F. Chen. Helicenes: synthesis and applications[J]. Chem. Rev., 2012,112:1463-1535. doi: 10.1021/cr200087r

    11. [11]

      H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60: buckminsterfullerene[J]. Nature, 1985,318:162-163. doi: 10.1038/318162a0

    12. [12]

      (a) D.M. Guldi, B.M. Illescas, C.M. Atienza, M. Wielopolski, N. Martín, Fullerene for organic electronics, Chem. Soc. Rev. 38(2009) 1587-1597; (b) G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat. Photonics 6(2012) 153-161; (c) B.C. Thompson, J.M.J. Fréchet, Polymer-fullerene composite solar cells, Angew. Chem. Int. Ed. 47(2008) 58-77; (d) G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 21(2009) 1323-1338; (e) X. Zhang, X.D. Li, Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines: fundamental understanding toward raising LUMO energy of fullerene electron-acceptor, Chin. Chem. Lett. 25(2014) 501-504.

    13. [13]

      (a) R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, et al., Conducting films of C60 and C70 by alkali-metal doping, Nature 350(1991) 320-322; (b) K. Tanigaki, T.W. Ebbesen, S. Saito, et al., Superconductivity at 33 K in CsxRbyC60, Nature 352(1991) 222-223.

    14. [14]

      U. Purushotham, G.N. Sastry. Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors[J]. Phys. Chem. Chem. Phys., 2013,15:5039-5048. doi: 10.1039/c3cp44673e

    15. [15]

      L.A. Scott, M.M. Boorum, B.J. McMahon. A rational chemical synthesis of C60[J]. Science, 2002,295:1500-1503. doi: 10.1126/science.1068427

    16. [16]

      L.T. Scott, E.A. Jackson, Q.Y. Zhang. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis[J]. J. Am. Chem. Soc., 2012,134:107-110. doi: 10.1021/ja209461g

    17. [17]

      K. Kawasumi, Q.Y. Zhang, Y. Segawa, L.T. Scott, K. Itami. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects[J]. Nat. Chem., 2013,5:739-744. doi: 10.1038/nchem.1704

    18. [18]

      (a) T. Amaya, H. Sakane, T. Hirao, A concave-bound CpFe complex of sumanene as a metal in a π bowl, Angew. Chem. Int. Ed. 46(2007) 8376-8379; (b) M.A. Petrukhina, Coordination of buckybowls: the first concave-bound metal complex, Angew. Chem. Int. Ed. 47(2008) 1550-1552; (c) J.S. Siegel, K.K. Baldridge, A. Linden, R. Dorta, d8 Rhodium and Iridium complexes of corannulene, J. Am. Chem. Soc. 128(2006) 10644-10645.

    19. [19]

      (a) A. Sygula, F.R. Fronczek, R. Sygula, P.W. Rabideau, M.M. Olmstead, A double concave hydrocarbon buckycatcher, J. Am. Chem. Soc. 129(2007) 3842-3843; (b) A.S. Filatov, M.V. Ferguson, S.N. Spisak, et al., Bowl-shaped polyarenes as concave-convex shape complementary hosts for C60- and C70-fullerenes, Cryst. Growth Des. 14(2014) 756-762.

    20. [20]

      K. Shi, T. Lei, X.Y. Wang, J.Y. Wang, J. Pei. A bowl-shaped molecule for organic fieldeffect transistors: crystal engineering and charge transport switching by oxygen doping[J]. Chem. Sci., 2014,5:1041-1045. doi: 10.1039/C3SC52701H

    21. [21]

      W.E. Barth, R.G. Lawton. Dibenzo[J]. J. Am. Chem. Soc., 1966,88:380-381. doi: 10.1021/ja00954a049

    22. [22]

      R.F.C. Brown, F.W. Eastwood, G.P. Jackman. Methyleneketenes and methylenecarbenes. IX. Thermal rearrangements of alkyl- and aryl-acetylenes involving alkyl- and aryl-methylenecarbenes[J]. Aust. J. Chem., 1977,30:1757-1767. doi: 10.1071/CH9771757

    23. [23]

      L.T. Scott, M.M. Hashemi, D.T. Meyer, H.B. Warren. Corannulene. A convenient new synthesis[J]. J. Am. Chem. Soc., 1991,113:7082-7084. doi: 10.1021/ja00018a082

    24. [24]

      L.T. Scott, P.C. Cheng, M.M. Hashemi. Corannulene. A three-step synthesis[J]. J. Am. Chem. Soc., 1997,119:10963-10968. doi: 10.1021/ja972019g

    25. [25]

      T.J. Seiders, K.K. Baldridge, J.S. Siegel. Synthesis and characterization of the first corannulene cyclophane[J]. J. Am. Chem. Soc., 1996,118:2754-2755. doi: 10.1021/ja953734y

    26. [26]

      T.J. Seiders, E.L. Elliot, G.H. Grube, J.S. Siegel. Synthesis of corannulene and alkyl derivatives of corannulene[J]. J. Am. Chem. Soc., 1999,121:7804-7813. doi: 10.1021/ja991310o

    27. [27]

      A. Sygula, P.W. Rabideau. Non-pyrolytic syntheses of buckybowls: corannulene, cyclopentacorannulene, and a semibuckminsterfullerene[J]. J. Am. Chem. Soc., 1999,121:7800-7803. doi: 10.1021/ja991169j

    28. [28]

      A. Sygula, P.W. Rabideau. A practical, large scale synthesis of the corannulene system[J]. J. Am. Chem. Soc., 2000,122:6323-6324. doi: 10.1021/ja0011461

    29. [29]

      A.M. Butterfield, B. Gilomen, J.S. Siegel. Kilogram-scale production of corannulene[J]. Org. Process Res. Dev., 2012,16:664-676. doi: 10.1021/op200387s

    30. [30]

      R.B. Huang, W.J. Huang, Y.H. Wang, Z.C. Tang, L.S. Zheng. Preparation of decachlorocorannulene and other perchlorinated fragments of fullerenes by electrical discharge in liquid chloroform[J]. J. Am. Chem. Soc., 1997,119:5954-5955. doi: 10.1021/ja970238w

    31. [31]

      M. Bancu, A.K. Rai, P.C. Cheng, R.D. Gilardi, L.T. Scott. Corannulene polysulfides: molecular bowls with multiple arms and flaps[J]. Synlett, 2004:173-176.  

    32. [32]

      P.E. Georghiou, A.H. Tran, S. Mizyed, M. Bancu, L.T. Scott. Concave polyarenes with sulfide-linked flaps and tentacles: new electron-rich hosts for fullerenes[J]. J. Org. Chem., 2005,70:6158-6163. doi: 10.1021/jo0503761

    33. [33]

      R.Q. Lu, Y.N. Zhou, X.Y. Yan. Thiophene-fused bowl-shaped polycyclic aromatics with a dibenzo[J]. Chem. Commun., 2015,51:1681-1684. doi: 10.1039/C4CC08451A

    34. [34]

      R. Chen, R.Q. Lu, K. Shi. Corannulene derivatives with low LUMO levels and dense convex-concave packing for n-channel organic field-effect transistors[J]. Chem. Commun., 2015,51:13768-13771. doi: 10.1039/C5CC03550C

    35. [35]

      R.Q. Lu, Y.Q. Zheng, Y.N. Zhou. Corannulene derivatives as non-fullerene acceptors in solution-processed bulk heterojunction solar cells[J]. J. Mater. Chem. A, 2014,2:20515-20519.

    36. [36]

      S. Ito, Y. Tokimaru, K. Nozaki. Benzene-fused azacorannulene bearing an internal nitrogen atom[J]. Angew. Chem. Int. Ed., 2015,54:7256-7260. doi: 10.1002/anie.v54.25

    37. [37]

      G. Mehta, S.R. Shah, K. Ravikumar. Towards the design of tricyclopenta[def, jkl, pqr] triphenylene (‘sumanene’): a ‘bowl-shaped’ hydrocarbon featuring a structural motif present in C60(buckminsterfullerene)[J]. J. Chem. Soc. Chem. Commun., 1993:1006-1008.  

    38. [38]

      H. Sakurai, T. Daiko, T. Hirao. synthesis of sumanene, a fullerene fragment[J]. Science, 2003,3011878. doi: 10.1126/science.1088290

    39. [39]

      (a) X.X. Li, X.F. Shao, Synthesis of heterasumanene, Synlett 25(2014) 1795-1798; (b) M. Saito, S. Furukawa, J. Kobayashi, T. Kawashima, The chemistry of heterasumanenes, Chem. Rec. 16(2016) 64-72.

    40. [40]

      Q.T. Tan, S. Higashibayashi, S. Karanjit, H. Sakurai. Enantioselective synthesis of a chiral nitrogen-doped buckybowl[J]. Nat. Commun., 2012,3:891-895. doi: 10.1038/ncomms1896

    41. [41]

      U.D. Priyakumar, G.N. Sastry. Theory provides a clue to accomplish the synthesis of sumanene, C21H12, the prototypical C3v-buckybowl[J]. Tetrahedron Lett., 2001,42:1379-1381. doi: 10.1016/S0040-4039(00)02249-8

    42. [42]

      S. Furukawa, J. Kobayashi, T. Kawashima. Development of a sila-Friedel-Crafts reaction and its application to the synthesis of dibenzosilole derivatives[J]. J. Am. Chem. Soc., 2009,131:14192-14193. doi: 10.1021/ja906566r

    43. [43]

      (a) Q. Yang, L.C. Li, S.H. Li, D.M. Yue, C.H. Xu, Synthesis and photophysical properties of poly(aryleneethynylene)s containing dibenzosilole unit, Chin. Chem. Lett. 23(2012) 1303-1306; (b) J. Luo, Z. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741.

    44. [44]

      (a) M. Saito, T. Tanikawa, T. Tajima, J.D. Guo, S. Nagase, Synthesis and structures of heterasumanenes having different heteroatom functionalities, Tetrahedron Lett. 51(2010) 672-675; (b) T. Tanikawa, M. Saito, J.D. Guo, S. Nagase, Synthesis, structures and optical properties of trisilasumanene and its related compounds, Org. Biomol. Chem. 9(2011) 1731-1735; (c) T. Tanikawa, M. Saito, J.D. Guo, S. Nagase, M. Minoura, Synthesis, structures, and optical properties of heterasumanenes containing group 14 elements and their related compounds, Eur. J. Org. Chem. 2012(2012) 7135-7142.

    45. [45]

      Y. Suda, S. Furukawa, J. Kobayashi, et al. Abstract of the 2nd International Symposium on π-System Figuration, Saitama, Japan, (2016), p. 53.

    46. [46]

      K. Imamura, K. Takimiya, T. Otsubo, Y. Aso. Triphenyleno[1,12-bcd:4,5-b'ćd':8,9-b"c"d"] trithiophene: the first bowl-shaped heteroaromatic[J]. Chem. Commun., 1999:1859-1860.

    47. [47]

      L.H. Klemm, E. Hall, L. Cousins, C.E. Klopfenstein. The insertion and extrusion of heterosulfur bridges. XIV. Synthesis of nitrotriphenyleno[J]. J. Heterocycl. Chem., 1987,24:1749-1755. doi: 10.1002/jhet.v24:6

    48. [48]

      X.X. Li, Y.T. Zhu, J.F. Shao. Non-pyrolytic, large-scale synthesis of trichalcogenasumanene: a two-step approach[J]. Angew. Chem. Int. Ed., 2014,53:535-538. doi: 10.1002/anie.v53.2

    49. [49]

      X.X. Li, Y.T. Zhu, J.F. Shao. Ring reconstruction on a trichalcogenasumanene buckybowl: a facile approach to donor-acceptor-type[J]. Angew. Chem. Int. Ed., 2015,54:267-271. doi: 10.1002/anie.201409620

    50. [50]

      F.C. Krebs, P.S. Larsen, J. Larsen. Synthesis, structure, and properties of 4,8,12-trioxa-12c-phospha-4,8,12,12c-tetrahydrodibenzo[J]. J. Am. Chem. Soc., 1997,119:1208-1216. doi: 10.1021/ja962023c

    51. [51]

      (a) M. Yamamura, T. Hasegawa, T. Nabeshima, Synthesis of phosphorus-centered and chalcogen-bridged concave molecules: modulation of bowl geometries and packing structures by changing bridging atoms, Org. Lett. 18(2016) 816-819; (b) M. Yamamura, K. Sukegawa, T. Nabeshima, Tuning the depth of bowl-shaped phosphine hosts: capsule and pseudo-cage architectures in host-guest complexes with C60 fullerene, Chem. Commun. 51(2015) 12080-12083; (c) M. Yamamura, D. Hongo, T. Nabeshima, Twofold fused concave hosts containing two phosphorus atoms: modules for the sandwich-type encapsulation of fullerenes in variable cavities, Chem. Sci. 6(2015) 6373-6378; (d) M. Yamamura, T. Saito, T. Nabeshima, Phosphorus-containing chiral molecule for fullerene recognition based on concave/convex interaction, J. Am. Chem. Soc. 136(2014) 14299-14306.

    52. [52]

      M. Kuratsu, M. Kozaki, K. Okada. 2,2':6',2":6",6-Trioxytriphenylamine: synthesis and properties of the radical cation and neutral species[J]. Angew. Chem. Int. Ed., 2005,44:4056-4058. doi: 10.1002/(ISSN)1521-3773

    53. [53]

      (a) D. Myśliwiec, M. Stępień, The fold-in approach to bowl-shaped aromatic compounds: synthesis of chrysaoroles, Angew. Chem. 125(2013) 1757-1761; (b) M.A. Majewski, T. Lis, J. Cybińska, M. Stępień, Chrysaorenes: assembling coronoid hydrocarbons via the fold-in synthesis, Chem. Commun. 51(2015) 15094-15097.

  • 加载中
    1. [1]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    4. [4]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    5. [5]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    8. [8]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    9. [9]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    10. [10]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    11. [11]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    12. [12]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    13. [13]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    14. [14]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    15. [15]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    16. [16]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    17. [17]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    20. [20]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

Metrics
  • PDF Downloads(6)
  • Abstract views(1067)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return