Citation: Yong-Gang Zhen, Huan-Li Dong, Lang Jiang, Wen-Ping Hu. Tailoring crystal polymorphs of organic semiconductors towards high-performance field-effect transistors[J]. Chinese Chemical Letters, ;2016, 27(8): 1330-1338. doi: 10.1016/j.cclet.2016.06.023 shu

Tailoring crystal polymorphs of organic semiconductors towards high-performance field-effect transistors

  • Corresponding author: Yong-Gang Zhen, zhenyg@iccas.ac.cn Wen-Ping Hu, huwp@iccas.ac.cn
  • Received Date: 11 May 2016
    Revised Date: 11 June 2016
    Accepted Date: 13 June 2016
    Available Online: 27 August 2016

Figures(12)

  • As a quite ubiquitous phenomenon, crystal polymorph is one of the key issues in the field of organic semiconductors. This review gives a brief summary to the advances on polymorph control of thin film and single crystal of representative organic semiconductors towards high-performance field-effect transistors. Particularly, the relationship between crystal polymporh and charge transport behaviour has been discussed to shed light on the rational preparation of outstanding organic semiconducting materials with desired crystal polymorph.
  • 加载中
    1. [1]

      W.C. McCrone, Polymorphism, in: D. Fox, M.M. Labes, A. Weissberger (Eds.), Physics and Chemistry of the Organic Solid State, 2, Interscience, New York, 1965, pp. 725-767.

    2. [2]

      G.R. Desiraju. Polymorphism: the same and not quite the same[J]. Cryst. Growth Des., 2008,8:3-5. doi: 10.1021/cg701000q

    3. [3]

      T.L. Threlfall. Analysis of organic polymorphs. A review[J]. Analyst, 1995,120:2435-2460. doi: 10.1039/an9952002435

    4. [4]

      J.D. Dunitz. Phase transitions in molecular crystals from a chemical viewpoint[J]. Pure Appl. Chem., 1991,63:177-185.  

    5. [5]

      Liebig Wöhler. Untersuchungen über das Radikal der Benzoesäure[J]. Ann. Pharm., 1832,3:249-282. doi: 10.1002/(ISSN)1099-0690

    6. [6]

      L.W. Huang, Q. Liao, Q. Shi. Rubrene micro-crystals from solution routes: their crystallography, morphology and optical properties[J]. J. Mater. Chem., 2010,20:159-166. doi: 10.1039/B914334C

    7. [7]

      R. Ruiz, D. Choudhary, B. Nickel. Pentacene thin film growth[J]. Chem. Mater., 2004,16:4497-4508. doi: 10.1021/cm049563q

    8. [8]

      C.C. Mattheus, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra. Modeling the polymorphism of pentacene[J]. J. Am. Chem. Soc., 2003,125:6323-6330. doi: 10.1021/ja0211499

    9. [9]

      L. Li, Q. Tang, H. Li. An ultra closely π-stacked organic semiconductor for high performance field-effect transistors[J]. Adv. Mater., 2007,19:2613-2617. doi: 10.1002/(ISSN)1521-4095

    10. [10]

      H. Jiang, X.J. Yang, Z.D. Cui. Phase dependence of single crystalline transistors of tetrathiafulvalene[J]. Appl. Phys. Lett., 2007,91123505. doi: 10.1063/1.2784970

    11. [11]

      R. Pfattner, M. Mas-Torrent, I. Bilotti. High-performance single crystal organic field-effect transistors based on two dithiophene-tetrathiafulvalene (DT-TTF) polymorphs[J]. Adv. Mater., 2010,22:4198-4203. doi: 10.1002/adma.v22:37

    12. [12]

      T. Siegrist, C. Kloc, R.A. Laudise, H.E. Katz, R.C. Haddon. Crystal growth, structure, and electronic band structure of alpha-4 T polymorphs[J]. Adv. Mater., 1998,10:379-382. doi: 10.1002/(ISSN)1521-4095

    13. [13]

      L. Antolini, G. Horowitz, F.F. Kouki, F. Garnier. Polymorphism in oligothiophenes with an even number of thiophene subunits[J]. Adv. Mater., 1998,10:382-385. doi: 10.1002/(ISSN)1521-4095

    14. [14]

      B. Servet, G. Horowitz, S. Ries. Polymorphism and charge transport in vacuum-evaporated sexithiophene films[J]. Chem. Mater., 1994,6:1809-1815. doi: 10.1021/cm00046a039

    15. [15]

      C.D. Dimitrakopoulos, P.R.L. Malenfant. Organic thin film transistors for large area electronics[J]. Adv. Mater., 2002,14:99-117. doi: 10.1002/(ISSN)1521-4095

    16. [16]

      N. Karl. Charge carrier transport in organic semiconductors[J]. Synth. Met., 2003,133-134:649-657. doi: 10.1016/S0379-6779(02)00398-3

    17. [17]

      G.R. Desiraju. Cryptic crystallography[J]. Nat. Mater., 2002,1:77-79. doi: 10.1038/nmat726

    18. [18]

      A.L. Briseno, S.C.B. Mannsfeld, M.M. Ling. Patterning organic single-crystal transistor arrays[J]. Nature, 2006,444:913-917. doi: 10.1038/nature05427

    19. [19]

      J. Bernstein, R.J. Davey, J.O. Henck. Concomitant polymorphs[J]. Angew. Chem. Int. Ed., 1999,38:3440-3461. doi: 10.1002/(SICI)1521-3773(19991203)38:23<>1.0.CO;2-U

    20. [20]

      V.C. Sundar, J. Zaumseil, V. Podzorov. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals[J]. Science, 2004,303:1644-1646. doi: 10.1126/science.1094196

    21. [21]

      V. Podzorov, E. Menard, A. Borissov. Intrinsic charge transport on the surface of organic semiconductors[J]. Phys. Rev. Lett., 2004,93086602. doi: 10.1103/PhysRevLett.93.086602

    22. [22]

      D.E. Henn, W.G. Williams, D.J. Gibbons. Crystallographic data for an orthorhombic form of rubrene[J]. J. Appl. Crystallogr., 1971,4256. doi: 10.1107/S0021889871006812

    23. [23]

      O.D. Jurchescu, A. Meetsma, T.T.M. Palstra. Low-temperature structure of rubrene single crystals grown by vapor transport[J]. Acta Crystallogr. B, 2006,62:330-334. doi: 10.1107/S0108768106003053

    24. [24]

      J. Takeya, M. Yamagishi, Y. Tominari. Very high-mobility organic singlecrystal transistors with in-crystal conduction channels[J]. Appl. Phys. Lett., 2007,90102120. doi: 10.1063/1.2711393

    25. [25]

      J.L. Brédas, J.P. Calbert, D.A. da Silva, J. Cornil. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport[J]. Proc. Natl. Acad. Sci. USA, 2002,99:5804-5809. doi: 10.1073/pnas.092143399

    26. [26]

      D.A. da Silva, E.G. Kim, J.L. Brédas. Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy[J]. Adv. Mater., 2005,17:1072-1076. doi: 10.1002/adma.v17:8

    27. [27]

      T. Matsukawa, M. Yoshimura, K. Sasai. Growth of thin rubrene single crystals from 1-propanol solvent[J]. J. Cryst. Growth, 2010,312:310-313. doi: 10.1016/j.jcrysgro.2009.10.048

    28. [28]

      C.H. Lee, T. Schiros, E.J.G. Santos. Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics[J]. Adv. Mater., 2014,26:2812-2817. doi: 10.1002/adma.v26.18

    29. [29]

      S.E. Fritz, S.M. Martin, C.D. Frisbie. Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction[J]. J. Am. Chem. Soc., 2004,126:4084-4085. doi: 10.1021/ja049726b

    30. [30]

      L.F. Drummy, D.C. Martin. Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films[J]. Adv. Mater., 2005,17:903-907. doi: 10.1002/(ISSN)1521-4095

    31. [31]

      H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Chang, X.W. Liang. Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films[J]. Adv. Funct. Mater., 2007,17:3639-3649. doi: 10.1002/(ISSN)1616-3028

    32. [32]

      A. Brillante, I. Bilotti, R.G.D. Valle. Characterization of phase purity in organic semiconductors by lattice-phonon confocal Raman mapping: application to pentacene[J]. Adv. Mater., 2005,17:2549-2553. doi: 10.1002/(ISSN)1521-4095

    33. [33]

      S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel. Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films[J]. J. Am. Chem. Soc., 2007,129:10316-10317. doi: 10.1021/ja0730516

    34. [34]

      M.H. Chang, W.Y. Chou, Y.C. Lee. Polymorphic transformation induced by nanoimprinted technology in pentacene-film early-stage growth[J]. Appl. Phys. Lett., 2010,97183301. doi: 10.1063/1.3512863

    35. [35]

      C.H. Wang, C.Y. Hsieh, J.C. Hwang. Flexible organic thin-film transistors with silk fibroin as the gate dielectric[J]. Adv. Mater., 2011,23:1630-1634. doi: 10.1002/adma.201004071

    36. [36]

      I.P.M. Bouchoms, W.A. Schoonveld, J. Vrijmoeth, T.M. Klapwijk. Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates[J]. Synth. Met., 1999,104:175-178. doi: 10.1016/S0379-6779(99)00050-8

    37. [37]

      J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin. Functionalized pentacene: improved electronic properties from control of solid-state order[J]. J. Am. Chem. Soc., 2001,123:9482-9483. doi: 10.1021/ja0162459

    38. [38]

      S.C. B.Mannsfeld, M.L. Tang, Z.N. Bao. Thin film structure of triisopropylsilylethynyl-functionalized pentacene and tetraceno[2, 3-b]thiophene from grazing incidence X-ray diffraction[J]. Adv. Mater., 2011,23:127-131. doi: 10.1002/adma.v23.1

    39. [39]

      G. Giri, E. Verploegen, S.C.B. Mannsfeld. Tuning charge transport in solutionsheared organic semiconductors using lattice strain[J]. Nature, 2011,480:504-508. doi: 10.1038/nature10683

    40. [40]

      K. Takimiya, I. Osaka, T. Mori, M. Nakano. Organic semiconductors based on[1] benzothieno[3, 2-b][1] benzothiophene substructure[J]. Acc. Chem. Res., 2014,47:1493-1502. doi: 10.1021/ar400282g

    41. [41]

      K. Takimiya, S. Shinamura, I. Osaka, E. Miyazaki. Thienoacene-based organic semiconductors[J]. Adv. Mater., 2011,23:4347-4370. doi: 10.1002/adma.201102007

    42. [42]

      Z.N. Bao, A.J. Lovinger, A. Dodabalapur. Organic field-effect transistors with high mobility based on copper phthalocyanine[J]. Appl. Phys. Lett., 1996,69:3066-3068. doi: 10.1063/1.116841

    43. [43]

      R. Zeis, T. Siegrist, C. Kloc. Single-crystal field-effect transistors based on copper phthalocyanine[J]. Appl. Phys. Lett., 2005,86022103. doi: 10.1063/1.1849438

    44. [44]

      N.M. Bamsey, A.P. Yuen, A.M. Hor. Integration of an M-phthalocyanine layer into solution-processed organic photovoltaic cells for improved spectral coverage[J]. Sol. Energ. Mat. Sol. C, 2011,95:1970-1973. doi: 10.1016/j.solmat.2011.01.042

    45. [45]

      D. Placencia, W.N. Wang, R.C. Shallcross. Organic photovoltaic cells based on solvent-annealed, textured titanyl phthalocyanine/C60 heterojunctions[J]. Adv. Funct. Mater., 2009,19:1913-1921. doi: 10.1002/adfm.v19:12

    46. [46]

      T. Del Caño, V. Parra, M.L. Rodríguez-Méndez. Characterization of evaporated trivalent and tetravalent phthalocyanines thin films: different degree of organization[J]. Appl. Surf. Sci., 2005,246:327-333. doi: 10.1016/j.apsusc.2004.11.036

    47. [47]

      M. Brinkmann, J.C. Wittmann, M. Barthel, M. Hanack, C. Chaumont. Highly ordered titanyl phthalocyanine films grown by directional crystallization on oriented poly(tetrafluoroethylene) substrate[J]. Chem. Mater., 2002,14:904-914. doi: 10.1021/cm011241o

    48. [48]

      H. Yonehara, H. Etori, M.K. Engel. Fabrication of various ordered films of oxotitanium(IV) phthalocyanine by vacuum deposition and their spectroscopic behavior[J]. Chem. Mater., 2001,13:1015-1022. doi: 10.1021/cm000766y

    49. [49]

      W.C. Chen, L.Z. Huang, X.L. Qiao. Efficient planar organic solar cells with the high near-infrared response[J]. Org. Electron., 2012,13:1086-1091. doi: 10.1016/j.orgel.2012.03.002

    50. [50]

      Z.P. Zhang, L. Jiang, C.L. Cheng. The impact of interlayer electronic coupling on charge transport in organic semiconductors: a case study on titanylphthalocyanine single crystals[J]. Angew. Chem. Int. Ed., 2016,55:5206-5209. doi: 10.1002/anie.201601065

    51. [51]

      A. Brillante, I. Bilotti, R.G.D. Valle. The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene[J]. Crystengcomm, 2008,10:1899-1909. doi: 10.1039/b810993a

    52. [52]

      M. Mas-Torrent, P. Hadley, S.T. Bromley, N. Crivillers. Single-crystal organic fieldeffect transistors based on dibenzo-tetrathiafulvalene[J]. Appl. Phys. Lett., 2005,86012110. doi: 10.1063/1.1848179

    53. [53]

      M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira. High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors[J]. J. Am. Chem. Soc., 2004,126:984-985. doi: 10.1021/ja0393933

    54. [54]

      M. Leufgen, O. Rost, C. Gould. High-mobility tetrathiafulvalene organic fieldeffect transistors from solution processing[J]. Org. Electron., 2008,9:1101-1106. doi: 10.1016/j.orgel.2008.08.011

    55. [55]

      M. Mas-Torrent, P. Hadley, X. Ribas, C. Rovira. Temperature dependence of the electrical properties of single-crystals of dithiophene-tetrathiafulvalene (DTTTF)[J]. Synth. Met., 2004,146:265-268. doi: 10.1016/j.synthmet.2004.08.023

    56. [56]

      D. Fichou. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices[J]. J. Mater. Chem., 2000,10:571-588. doi: 10.1039/a908312j

    57. [57]

      L. Zhang, N.S. Colella, B.P. Cherniawski. Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices, ACS Appl[J]. Mater. Interfaces., 2014,6:5327-5343. doi: 10.1021/am4060468

    58. [58]

      M. Halik, H. Klauk, U. Zschieschang. Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors[J]. Adv. Mater., 2003,15:917-922. doi: 10.1002/adma.200304654

    59. [59]

      G. Schweicher, N. Paquay, C. Amato. Toward single crystal thin films of terthiophene by directional crystallization using a thermal gradient[J]. Cryst. Growth Des., 2011,11:3663-3672. doi: 10.1021/cg2007793

    60. [60]

      T. Siegrist, R.M. Fleming, R.C. Haddon. The crystal structure of the hightemperature polymorph of a-hexathienyl (a-6 T/HT)[J]. J. Mater. Res., 1995,10:2170-2173. doi: 10.1557/JMR.1995.2170

    61. [61]

      G. Horowitz, B. Bachet, A. Yassar. Growth and characterization of sexithiophene single crystals[J]. Chem. Mater., 1995,7:1337-1341. doi: 10.1021/cm00055a010

    62. [62]

      M. Campione, R. Ruggerone, S. Tavazzi, M. Moret. Growth and characterisation of centimetre-sized single crystals of molecular organic materials[J]. J. Mater. Chem., 2005,15:2437-2443. doi: 10.1039/b415912h

    63. [63]

      R.A. Laudise, P.M. Bridenbaugh, T. Siegrist. Growth of α-hexathienyl by a micro melt technique[J]. J. Cryst. Growth, 1995,152:241-244. doi: 10.1016/0022-0248(95)00134-4

    64. [64]

      S. Destri, M. Mascherpa, W. Porzio. Mesophase formation in α-sexithienyl at high temperature-an X-ray diffraction study[J]. Adv. Mater., 1993,5:43-45. doi: 10.1002/(ISSN)1521-4095

    65. [65]

      M. Campione, S. Tavazzi, M. Moret, W. Porzio. Crystal-to-crystal phase transition in a-quaterthiophene: an optical and structural study[J]. J. Appl. Phys., 2007,101083512. doi: 10.1063/1.2718291

    66. [66]

      M. Campione, A. Borghesi, M. Laicini. Growth-related properties and postgrowth phenomena in organic molecular thin films[J]. J. Chem. Phys., 2007,127244703. doi: 10.1063/1.2814244

    67. [67]

      A. Sassella, D. Braga, M. Campione. Probing phase transitions and stability of organic semiconductor single crystals by dielectric investigation[J]. J. Appl. Phys., 2011,109013529. doi: 10.1063/1.3531574

    68. [68]

      S.E. Kaviyil, M. Campione, A. Sassella. Growth of pseudomorphic structures through organic epitaxy[J]. J. Chem. Phys., 2012,137224703. doi: 10.1063/1.4770001

    69. [69]

      C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics[J]. Chem. Rev., 2012,112:2208-2267. doi: 10.1021/cr100380z

    70. [70]

      G. Horowitz, R. Hajlaoui, F. Kouki. An analytical model for the organic field-effect transistor in the depletion mode. Application to sexithiophene films and single crystals[J]. Eur. Phys. J. Appl. Phys., 1998,1:361-367. doi: 10.1051/epjap:1998157

    71. [71]

      C. Kloc, P.G. Simpkins, T. Siegrist, P.A. Laudise. Physical vapor growth of centimeter-sized crystals of a-hexathiophene[J]. J. Cryst. Growth, 1997,182:416-427. doi: 10.1016/S0022-0248(97)00370-9

    72. [72]

      H.E. Katz, A.J. Lovinger, J. Johnson. A soluble and air-stable organic semiconductor with high electron mobility[J]. Nature, 2000,404:478-481. doi: 10.1038/35006603

    73. [73]

      J.H. Oh, S.L. Suraru, W.Y. Lee. High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides[J]. Adv. Funct. Mater., 2010,20:2148-2156. doi: 10.1002/adfm.v20:13

    74. [74]

      H. Usta, A. Facchetti, T.J. Marks. n-channel semiconductor materials design for organic complementary circuits[J]. Acc. Chem. Res., 2011,44:501-510. doi: 10.1021/ar200006r

    75. [75]

      F.J. Zhang, Y.B. Hu, T. Schuettfort. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thinfilm transistors with mobility of up to 3.50 cm2 V-1 s-1[J]. J. Am. Chem. Soc., 2013,135:2338-2349. doi: 10.1021/ja311469y

    76. [76]

      T. He, M. Stolte, F. Würthner. Air-stable n-channel organic single crystal fieldeffect transistors based on microribbons of core-chlorinated naphthalene diimide[J]. Adv. Mater., 2013,25:6951-6955. doi: 10.1002/adma.v25.48

    77. [77]

      T. He, M. Stolte, C. Burschka. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air[J]. Nat. Commun., 2015,65954. doi: 10.1038/ncomms6954

    78. [78]

      J. Zaumseil, H. Sirringhaus. Electron and ambipolar transport in organic fieldeffect transistors[J]. Chem. Rev., 2007,107:1296-1323. doi: 10.1021/cr0501543

  • 加载中
    1. [1]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    7. [7]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    10. [10]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    11. [11]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    14. [14]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(3)
  • Abstract views(700)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return