Citation: Yu Zhi-Kai, Fu Wei-Fei, Liu Wen-Qing, Zhang Zhong-Qiang, Liu Yu-Jing, Yan Jie-Lin, Ye Tao, Yang Wei-Tao, Li Han-Ying, Chen Hong-Zheng. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells[J]. Chinese Chemical Letters, ;2017, 28(1): 13-18. doi: 10.1016/j.cclet.2016.06.021 shu

Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells

  • Corresponding author: Chen Hong-Zheng, hzchen@zju.edu.cn
  • Received Date: 16 May 2016
    Revised Date: 30 May 2016
    Accepted Date: 6 June 2016
    Available Online: 21 January 2016

Figures(5)

  • A solution-processed CuOx film has been successfully integrated as the hole-transporting layer (HTL) for inverted planar heterojunction perovskite solar cells (PVSCs). The CuOx layer is fabricated by simply spin-coating a copper acetylacetonate (Cu (acac)2) chloroform solution onto ITO glass with high transparency in the visible range. The compact and pinhole-free perovskite film with large grain domains is grown on the CuOx film. The inverted PVSCs with the structure of ITO/CuOx/MAPbI3/PC61BM/ZnO/Al are fabricated and show a best PCE of 17.43% under standard AM 1.5G simulated solar irradiation with a VOC of 1.03 V, a JSC of 22.42 mA cm-2, and a fill factor of 0.76, which is significantly higher and more stable than that fabricated from the often used hole-transporting material PEDOT:PSS (11.98%) under the same experimental conditions. The enhanced performance is attributed to the efficient hole extraction through the CuOx layer as well as the high-quality CH3NH3PbI3 films grown on the CuOx. Our results indicate that low-cost and solution-processed CuOx film is a promising HTL for high performance PVSCs with better stability.
  • 加载中
    1. [1]

      Stranks S.D., Eperon G.E., Grancini G.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013,342:341-344. doi: 10.1126/science.1243982

    2. [2]

      Lin Q.Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P.. Electro-optics of perovskite solar cells[J]. Nat. Photon., 2015,9:106-112.  

    3. [3]

      Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604

    4. [4]

      Liu T.H., Chen K., Hu Q.. Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells[J]. Chin. Chem. Lett., 2015,26:1518-1521. doi: 10.1016/j.cclet.2015.09.022

    5. [5]

      Yang Z.S., Yang L.G., Wu G., Wang M., Chen H.Z.. A heterojunction based on wellordered organic-inorganic hybrid perovskite and its photovoltaic performance[J]. Acta Chim. Sin., 2011,69:627-632.  

    6. [6]

      Wu G., Zhang X.Q., Gu Z.W., Chen H.Z.. Progress of the research on organicInorganic hybrid perovskites based solar cells[J]. Mater. China, 2015,34:136-143.  

    7. [7]

      Jeon N.J., Noh J.H., Yang W.S.. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133

    8. [8]

      Zhou H.P., Chen Q., Li G.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050

    9. [9]

      Xue Q.F., Sun C., Hu Z.C.. Recent advances in perovskite solar cells:morphology control and interfacial engineering[J]. Acta Chim. Sin., 2015,73:179-192. doi: 10.6023/A14090674

    10. [10]

      Nie W.Y., Tsai H., Asadpour R.. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472

    11. [11]

      Qin P., Tanaka S., Ito S.. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat. Commun., 2014,53834.  

    12. [12]

      Wang L., Fu W.F., Gu Z.W.. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer[J]. J. Mater. Chem. C, 2014,2:9087-9090. doi: 10.1039/C4TC01875C

    13. [13]

      Shao Y.C., Xiao Z.G., Bi C.. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784

    14. [14]

      Liang P.W., Liao C.Y., Chueh C.C.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv. Mater., 2014,26:3748-3754. doi: 10.1002/adma.v26.22

    15. [15]

      Heo J.H., Song D.H., Han H.J.. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Adv. Mater., 2015,27:3424-3430. doi: 10.1002/adma.v27.22

    16. [16]

      Wu C.G., Chiang C.H., Tseng Z.L.. High efficiency stable inverted perovskite solar cells without current hysteresis[J]. Energy Environ. Sci., 2015,8:2725-2733. doi: 10.1039/C5EE00645G

    17. [17]

      Heo J.H., Han H.J., Kim D., Ahn T.K., Im S.H.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ. Sci., 2015,8:1602-1608. doi: 10.1039/C5EE00120J

    18. [18]

      Chen W., Wu Y.Z., Yue Y.F.. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015,350:944-948. doi: 10.1126/science.aad1015

    19. [19]

      Huang C.Y., Fu W.F., Li C.Z.. Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138:2528-2531. doi: 10.1021/jacs.6b00039

    20. [20]

      Krishna A., Sabba D., Li H.R.. Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells[J]. Chem. Sci., 2014,5:2702-2709. doi: 10.1039/C4SC00814F

    21. [21]

      Hua Y., Xu B., Liu P.. High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors[J]. Chem. Sci., 2016,7:2633-2638. doi: 10.1039/C5SC03569D

    22. [22]

      Bi C., Wang Q., Shao Y.C.. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nat. Commun., 2015,67747. doi: 10.1038/ncomms8747

    23. [23]

      Wang Q., Bi C., Huang J.S.. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells[J]. Nano Energy, 2015,15:275-280. doi: 10.1016/j.nanoen.2015.04.029

    24. [24]

      Tan Z.A., Qian D.P., Zhang W.Q.. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer[J]. J. Mater. Chem. A, 2013,1:657-664. doi: 10.1039/C2TA00325B

    25. [25]

      Qiu W.M., Hadipour A., Müller R.. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6:16335-16343. doi: 10.1021/am504606u

    26. [26]

      Tan Z.A., Zhang W.Q., Cui C.H.. Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells[J]. Phys. Chem. Chem. Phys., 2012,14:14589-14595. doi: 10.1039/c2cp43125d

    27. [27]

      Steirer K.X., Ndione P.F., Widjonarko N.E.. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Adv. Energy Mater., 2011,1:813-820. doi: 10.1002/aenm.v1.5

    28. [28]

      Tan Z.A., Li L.J., Cui C.H.. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells[J]. J. Phys. Chem. C, 2012,116:18626-18632. doi: 10.1021/jp304878u

    29. [29]

      Wang F.Z., Tan Z.A., Li Y.F.. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2015,8:1059-1091. doi: 10.1039/C4EE03802A

    30. [30]

      Yin X.T., Que M.D., Xing Y.L., Que W.X.. High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer[J]. J. Mater. Chem. A, 2015,3:24495-24503. doi: 10.1039/C5TA08193A

    31. [31]

      Kim J.H., Liang P.W., Williams S.T.. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solutionprocessed copper-doped nickel oxide hole-transporting layer[J]. Adv. Mater., 2015,27:695-701. doi: 10.1002/adma.201404189

    32. [32]

      Jung J.W., Chueh C.C., Jen A.K.Y.. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Adv. Energy Mater., 2015,51500486. doi: 10.1002/aenm.201500486

    33. [33]

      Rao H.X., Sun W.H., Ye S.Y.. Solution-processed CuS NPs as an inorganic holeselective contact material for inverted planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2016,8:7800-7805. doi: 10.1021/acsami.5b12776

    34. [34]

      Yu Z.K., Liu W.Q., Fu W.F.. An aqueous solution-processed CuOx film as an anode buffer layer for efficient and stable organic solar cells[J]. J. Mater. Chem. A, 2016,4:5130-5136. doi: 10.1039/C6TA00909C

    35. [35]

      Nejand B.A., Ahmadi V., Gharibzadeh S., Shahverdi H.R.. Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J]. ChemSusChem, 2016,9:302-313. doi: 10.1002/cssc.201501273

    36. [36]

      Chatterjee S., Pal A.J.. Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures[J]. J. Phys. Chem. C, 2016,120:1428-1437. doi: 10.1021/acs.jpcc.5b11540

    37. [37]

      Yu W.L., Li F., Wang H.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016,8:6173-6179. doi: 10.1039/C5NR07758C

    38. [38]

      Zuo C.T., Ding L.M.. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells[J]. Small, 2015,11:5528-5532. doi: 10.1002/smll.v11.41

    39. [39]

      Qian L., Yang J.H., Zhou R.J.. Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime[J]. J. Mater. Chem., 2011,21:3814-3817. doi: 10.1039/c0jm03799k

    40. [40]

      Chen W.Y., Deng L.L., Dai S.M.. Low-costsolution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:19353-19359. doi: 10.1039/C5TA05286F

    41. [41]

      Liu T., Zuo L.J., Ye T.. Low temperature processed ITO-free perovskite solar cells without a hole transport layer[J]. RSC Adv., 2015,5:94752-94758. doi: 10.1039/C5RA20125J

    42. [42]

      Zuo L.J., Gu Z.W., Ye T.. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. J. Am. Chem. Soc., 2015,137:2674-2679. doi: 10.1021/ja512518r

    43. [43]

      Gu Z.W., Zuo L.J., Larsen-Olsen T.T.. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates[J]. J. Mater. Chem. A, 2015,3:24254-24260. doi: 10.1039/C5TA07008B

    44. [44]

      Shao Z.P., Pan X., Zhang X.H.. Influence of structure and morphology of perovskite films on the performance of perovskite solar cells[J]. Acta Chim. Sin., 2015,73:267-271. doi: 10.6023/A14100721

  • 加载中
    1. [1]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    4. [4]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    5. [5]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    6. [6]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    9. [9]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    10. [10]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    11. [11]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    12. [12]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    13. [13]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    16. [16]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    17. [17]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    18. [18]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    19. [19]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    20. [20]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

Metrics
  • PDF Downloads(4)
  • Abstract views(1465)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return