Citation: Xiang-Wei Zhu, Kun Lu, Huan Li, Rui-Min Zhou, Zhi-Xiang Wei. Naphthodithiophene-based donor materials for solution processed organic solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1271-1276. doi: 10.1016/j.cclet.2016.06.015 shu

Naphthodithiophene-based donor materials for solution processed organic solar cells


  • Author Bio:



    Xiang-Wei Zhu has been an Assistant Professor at National Center for Nanoscience and Technology (NCNST) of China. He received his BS degree (2006) from China University of Mining & Technology, Beijing, and MS degree (2010) from University of Science and Technology Beijing. Then he obtained his PhD degree from Tsinghua University in 2016. His current research interests focus on the design and synthesis of organic optoelectronic materials;Kun Lu has been a professor at NCNST since 2015. He obtained his BS degree from Shandong University in 2004 and his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences (CAS) in 2010. He became an assistant professor from 2010 to 2013 and then associate professor from 2013 to 2015. His research focuses on the synthesis of polymeric and small molecular semiconducting materials for photovoltaic devices and the application in large area flexible devices;Zhi-Xiang Wei has been a professor at NCNST since 2006. He graduated with a BS degree in 1997 and an MS degree in 2000 from Xi'an Jiaotong University. He obtained his PhD degree in 2003 from the Institute of Chemistry, CAS. From 2003 to 2005, he took postdoctoral research at the Max-Planck-Institute of Colloid and Interfaces and at the University of Toronto. He was awarded with the "Hundred Talents Program" in 2006 and the "National Science Fund for Distinguished Young Scholars" in 2011. His research focuses on self-assembled organic functional nanomaterials and related flexible optoelectronic devices
  • Corresponding author: Kun Lu, luk@nanoctr.cn Zhi-Xiang Wei, weizx@nanoctr.cn
  • Received Date: 3 May 2016
    Revised Date: 16 June 2016
    Accepted Date: 6 June 2016
    Available Online: 27 August 2016

Figures(7)

  • As an emerging donor building block, naphthodithiophene (NDT) is causing more concerns in the field of organic semiconductors. With the rigid and coplanar molecule structure, NDT will exhibit more application space relying on its own advantage for facilitating the charge carrier transport. In this review article, we have summarized the development progress on the NDT-based donor materials for solution processed organic solar cells. Discussions and comments on those representative NDT type materials about structure and property are also presented.
  • 加载中
    1. [1]

      S. Shinamura, I. Osaka, E. Miyazaki. Linear-and angular-shaped naphthodithiophenes: selective synthesis, properties, and application to organic fieldeffect transistors[J]. J. Am. Chem. Soc., 2011,133:5024-5035. doi: 10.1021/ja110973m

    2. [2]

      S. Shinamura, E. Miyazaki, K. Takimiya. Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[J]. J. Org. Chem., 2010,75:1228-1234. doi: 10.1021/jo902545a

    3. [3]

      I. Osaka, T. Abe, S. Shinamura, E. Miyazaki, K. Takimiya. High-mobility semiconducting naphthodithiophene copolymers[J]. J. Am. Chem. Soc., 2010,132:5000-5001. doi: 10.1021/ja101125p

    4. [4]

      I. Osaka, T. Abe, S. Shinamura, K. Takimiya. Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers[J]. J. Am. Chem. Soc., 2011,133:6852-6860. doi: 10.1021/ja201591a

    5. [5]

      J.H. Hou, M.H. Park, S.Q. Zhang. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[J]. Macromolecules, 2008,41:6012-6018. doi: 10.1021/ma800820r

    6. [6]

      . Loser, C.J. Bruns, H. Miyauchi. A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells[J]. J. Am. Chem. Soc, 2011,133:8142-8145. doi: 10.1021/ja202791n

    7. [7]

      P. Dutta, W. Yang, S.H. Eom. Development of naphtho[J]. Chem. Commun., 2012,48:573-575. doi: 10.1039/C1CC15465F

    8. [8]

      P. Dutta, W. Yang, W.H. Lee, I.N. Kang, S.H. Lee. Lee, Novel naphtho[1, 2-b:5, 6-b'] dithiophene core linear donor-π-acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells[J]. J. Mater. Chem., 2012,22:10840-10851. doi: 10.1039/c2jm30934c

    9. [9]

      S. Loser, H. Miyauchi, J.W. Hennek. A "zig-zag" naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells[J]. Chem. Commun, 2011,48:8511-8513.  

    10. [10]

      X.W. Zhu, B.Z. Xia, K. Lu. Naphtho[J]. Chem. Mater., 2016,28:943-950. doi: 10.1021/acs.chemmater.5b04668

    11. [11]

      D. Deng, Y.J. Zhang, L. Yuan. Effects of shortened alkyl chains on solutionprocessable small molecules with oxo-alkylated nitrile end-capped acceptors for high-performance organic solar cells[J]. Adv. Energy Mater., 2014,41400538. doi: 10.1002/aenm.201400538

    12. [12]

      Q. Peng, Q. Huang, X.B. Hou. Enhanced solar cell performance by replacing benzodithiophene with naphthodithiophene in diketopyrrolopyrrole-based copolymers[J]. Chem. Commun., 2012,48:11452-11454. doi: 10.1039/c2cc36324k

    13. [13]

      K. Li, Z.J. Li, K. Feng. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J. Am. Chem. Soc., 2013,135:13549-13557. doi: 10.1021/ja406220a

    14. [14]

      S. Sanjaykumar, C.E. Song, W.S. Shin. Synthesis and characterization of a novel naphthodithiophene-based copolymer for use in polymer solar cells[J]. Macromolecules, 2012,45:6938-6945. doi: 10.1021/ma301312d

    15. [15]

      R.S. Koti, S.R. Sanjaykumar, S.J. Hong. 3, 8-Dialkoxynaphthodithiophene based copolymers for efficient polymer solar cell[J]. Sol. Energy Mater. Sol. Cells, 2013,108:213-222. doi: 10.1016/j.solmat.2012.09.021

    16. [16]

      P. Dutta, H. Park, W.H. Lee. Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[J]. Polym. Chem., 2014,5:132-143. doi: 10.1039/C3PY00911D

    17. [17]

      P. Dutta, H. Park, M. Oh. Modulation of electronic properties of π-conjugated copolymers derived from naphtho[J]. J. Polym. Sci. Part A: Polym. Chem., 2013,51:2948-2958. doi: 10.1002/pola.26691

    18. [18]

      I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, K. Takimiya. Naphthodithiophenebased donor-acceptor polymers: versatile semiconductors for OFETs and OPVs[J]. ACS Macro Lett., 2012,1:437-440. doi: 10.1021/mz300065t

    19. [19]

      C. Bathula, S. Badgujar, C.E. Song. Effect of backbone structures on photovoltaic properties in naphthodithiophene-based copolymers[J]. J. Polym. Sci. Part A: Polym. Chem., 2014,52:305-312. doi: 10.1002/pola.27005

    20. [20]

      C. Bathula, C.E. Song, S. Badgujar. Naphtho[J]. Polym. Chem., 2013,4:2132-2139. doi: 10.1039/c3py21062f

    21. [21]

      S.W. Shi, P. Jiang, S.Q. Yu. Efficient polymer solar cells based on a broad bandgap D-A copolymer of "zigzag" naphthodithiophene and thieno[J]. J. Mater. Chem. A, 2013,1:1540-1543. doi: 10.1039/C2TA01143C

    22. [22]

      S.W. Shi, X.D. Xie, P. Jiang. Naphtho[J]. Macromolecules, 2013,46:3358-3366. doi: 10.1021/ma400177w

    23. [23]

      J. Lee, H. Ko, E. Song. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:21159-21169. doi: 10.1021/acsami.5b04884

    24. [24]

      S.W. Cheng, C.E. Tsai, W.W. Liang. Angular-shaped 4, 9-dialkylnaphthodithiophene-based donor-acceptor copolymers for efficient polymer solar cells and high-mobility field-effect transistors[J]. Macromolecules, 2015,48:2030-2038. doi: 10.1021/acs.macromol.5b00098

    25. [25]

      S.W. Cheng, D.Y. Chiou, C.E. Tsai. Angular-shaped 4, 9-dialkyl a-and bnaphthodithiophene-based donor-acceptor copolymers: investigation of isomeric structural effects on molecular properties and performance of field-effect transistors and photovoltaics[J]. Adv. Funct. Mater., 2015,25:6131-6143. doi: 10.1002/adfm.v25.38

    26. [26]

      S.W. Cheng, D.Y. Chiou, Y.Y. Lai. Synthesis and molecular properties of four isomeric dialkylated angular-shaped naphthodithiophenes[J]. Org. Lett., 2013,15:5338-5341. doi: 10.1021/ol4025953

    27. [27]

      S. Shinamura, R. Sugimoto, N. Yanai. Orthogonally functionalized naphthodithiophenes: selective protection and borylation[J]. Org. Lett., 2012,14:4718-4721. doi: 10.1021/ol301797g

    28. [28]

      I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya. Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency[J]. J. Am. Chem. Soc., 2013,135:8834-8837. doi: 10.1021/ja404064m

    29. [29]

      L.J. Huo, J.H. Hou, S.Q. Zhang, H.Y. Chen, Y. Yang. A polybenzo[1, 2-b:4, 5-b'] dithiophene derivative with deep HOMO level and its application in highperformance polymer solar cells[J]. Angew. Chem. Int. Ed, 2010,49:1500-1503. doi: 10.1002/anie.200906934

    30. [30]

      L.J. Huo, S.Q. Zhang, X. Guo. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers[J]. Angew. Chem. Int. Ed., 2011,50:9697-9702. doi: 10.1002/anie.201103313

    31. [31]

      S.W. Shi, K.L. Shi, R. Qu. Alkylphenyl substituted naphthodithiophene: a new building unit with conjugated side chains for semiconducting materials[J]. Macromol. Rapid Commun., 2014,35:1886-1889.  

    32. [32]

      X.W. Zhu, J. Fang, K. Lu. Naphtho[J]. Chem. Mater., 2014,26:6947-6954. doi: 10.1021/cm5033223

  • 加载中
    1. [1]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    2. [2]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    3. [3]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    4. [4]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    5. [5]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    6. [6]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    8. [8]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    9. [9]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    10. [10]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    11. [11]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    12. [12]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    13. [13]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    14. [14]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    15. [15]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    16. [16]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    17. [17]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    18. [18]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

Metrics
  • PDF Downloads(1)
  • Abstract views(676)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return