Citation: Hong-Ying Niu, Ling-Yun Su, Shi-Xia Bai, Jian-Ping Li, Xi-Lan Feng, Hai-Ming Guo. Synthesis of C8-alkyl-substituted purine analogues by direct alkylation of 8-H purines with tetrahydrofuran catalyzed by CoCl2·6H2O[J]. Chinese Chemical Letters, ;2017, 28(1): 105-108. doi: 10.1016/j.cclet.2016.06.009 shu

Synthesis of C8-alkyl-substituted purine analogues by direct alkylation of 8-H purines with tetrahydrofuran catalyzed by CoCl2·6H2O

  • Corresponding author: Hong-Ying Niu, niu_hy@163.com
  • Received Date: 1 April 2016
    Revised Date: 25 May 2016
    Accepted Date: 26 May 2016
    Available Online: 10 January 2016

Figures(2)

  • C8-Alkyl-substituted purine analogues were synthesized through direct alkylation of 8-H purine with tetrahydrofuran in the presence of Co catalyst in one step. The reactions gave a series of novel C8-oxygen heterocyclic alkyl purine compounds in good yields under mild reaction conditions by the readily available alkylating reagents, providing a complementary route to the classical coupling reactions for the synthesis of C8-alkyl-substituted purine analogues.
  • 加载中
    1. [1]

      Romeo G., Chiacchio U., Corsaro A., Merino P.. Chemical synthesis of heterocyclicsugar nucleoside analogues[J]. Chem. Rev., 2010,110:3337-3370. doi: 10.1021/cr800464r

    2. [2]

      Tan X., Chu C.K., Boudinot F.D.. Development and optimization of anti-HIV nucleoside analogs and prodrugs:a review of their cellular pharmacology, structure-activity relationships and pharmacokinetics[J]. Adv. Drug Delivery Rev., 1999,39:117-151. doi: 10.1016/S0169-409X(99)00023-X

    3. [3]

      Périgau C., Gosselin G., Imbach J.L.. Nucleoside analogues as chemotherapeutic agents:a review[J]. Nucleos. Nucl., 1992,11:903-945. doi: 10.1080/07328319208021748

    4. [4]

      Huryn D.M., Okabe M.. AIDS-driven nucleoside chemistry[J]. Chem. Rev., 1992,92:1745-1768. doi: 10.1021/cr00016a004

    5. [5]

      Mieczkowski A., Roy V., Agrofoglio L.A.. Preparation of cyclonucleosides[J]. Chem. Rev., 2010,110:1828-1856. doi: 10.1021/cr900329y

    6. [6]

      Sangeetha N.M., Maitra U.. Supramolecular gels:functions and uses[J]. Chem. Soc. Rev., 2005,34:821-836. doi: 10.1039/b417081b

    7. [7]

      Parker W.B.. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer[J]. Chem. Rev., 2009,109:2880-2893. doi: 10.1021/cr900028p

    8. [8]

      Li J.J., Gui X.X.. L-ProT catalyzed highly regioselective N-alkoxyalkylation of purine rings with vinyl ethers[J]. China Chem. Lett., 2014,25:1341-1345. doi: 10.1016/j.cclet.2014.04.023

    9. [9]

      Fu X.Z., Jiang F.J., Ou Y.. Synthesis and anti-HBV evaluation of mono L-amino acid ester, mono non-steroid anti-inflammation drug carboxylic ester derivatives of acyclonucleoside phosphonates[J]. China Chem. Lett., 2014,25:115-118. doi: 10.1016/j.cclet.2013.09.013

    10. [10]

      Aerschot A.A.V., Mamos P., Weyns N.J.. Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents[J]. J. Med. Chem., 1993,36:2938-2942. doi: 10.1021/jm00072a013

    11. [11]

      Manfredini S., Baraldi P.G., Bazzanini R.. Synthesis and cytotoxic activity of 6-vinyl-and 6-ethynyluridine and 8-vinyl-and 8-ethynyladenosine[J]. J. Med. Chem., 1995,38:199-203. doi: 10.1021/jm00001a025

    12. [12]

      Chang L.C.W., Spanjersberg R.F., Künzel J.K.F.D.. 2, 6-Disubstituted and 2, 6, 8-trisubstituted purines as adenosine receptor antagonists[J]. J. Med. Chem., 2006,49:2861-2867. doi: 10.1021/jm050640i

    13. [13]

      (a) A.A.V. Aerschot, P. Mamos, N.J. Weyns, et al., Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents, J. Med. Chem. 36(1993) 2938-2942.

    14. [14]

      Brill W.K.D., Riva-Toniolo C.. Solid-phase synthesis of 2, 6, 8-trisubstituted purines[J]. Tetrahedron Lett., 2001,42:6515-6518. doi: 10.1016/S0040-4039(01)01300-4

    15. [15]

      Moriarty R.M., Epa W.R., Awasthi A.K.. Palladium catalysed C-8 alkylation and vinylation of adenosine 2'-deoxyadenosine and 2', 3'-dideoxyadenosine nucleosides[J]. Tetrahedron Lett., 1990,31:5877-5880. doi: 10.1016/S0040-4039(00)97983-8

    16. [16]

      Hocek M., Hocková D., Štamnský J.. Cytostatic 6-arylpurine nucleosides V. Synthesis of 8-substituted 6-phenylpurine ribonucleosides[J]. Collect. Czech. Chem. Commun, 2003,68:837-848. doi: 10.1135/cccc20030837

    17. [17]

      Kitade Y., Nakata Y., Hirota K.. 8-Methyladenosine-substituted analogues of 2-5A:synthesis and their biological activities[J]. Nucleic Acids Res., 1991,19:4103-4108. doi: 10.1093/nar/19.15.4103

    18. [18]

      Hirth B., Barker Jr R.H., Celatka C.A.. Discovery of new S-adenosylmethionine decarboxylase inhibitors for the treatment of human african trypanosomiasis (HAT)[J]. Bioorg. Med. Chem. Lett, 2009,19(11):2916-2919. doi: 10.1016/j.bmcl.2009.04.096

    19. [19]

      Havelková M., Dvořák D., Hocek M.. The Suzuki-Miyaura cross-coupling reaction of 2-, 6-or 8-halopurines with boronic acids leading to 2-, 6-or 8-aryl-and alkenylpurine derivatives[J]. Synthesis, 2001,11:1704-1710.  

    20. [20]

      Hocek M., Dvořáková H.. An efficient synthesis of 2-substituted 6-methylpurine bases and nucleosides by Fe-or Pd-catalyzed cross-coupling reactions of 2, 6-dichloropurines[J]. J. Org. Chem., 2003,68:5773-5776. doi: 10.1021/jo034351i

    21. [21]

      Hocek M., Hocková D., Dvořáková H.. Dichotomy in regioselective cross-coupling reactions of 6, 8-dichloropurines with phenylboronic acid and methylmagnesium chloride:synthesis of 6, 8-disubstituted purines[J]. Synthesis, 2004,6:889-894.

    22. [22]

      Hocek M., Pohl R.. Regioselectivity in cross-coupling reaction of 2, 6, 8-trichloro-9-(tetrahydropyran-2-yl) purine:synthesis of 2, 6, 8-trisubstituted purine bases[J]. Synthesis, 2004,17:2869-2876.  

    23. [23]

      Ackermann L., Vicente R., Kapdi A.R.. Transition-metal-catalyzed direct arylation of (hetero) arenes by C-H bond cleavage[J]. Angew. Chem. Int. Ed., 2009,48:9792-9826. doi: 10.1002/anie.v48:52

    24. [24]

      Daugulis O., Do H.Q., Shabashov D.. Palladium-and copper-catalyzed arylation of carbon-hydrogen bonds[J]. Acc. Chem. Res., 2009,42:1074-1086. doi: 10.1021/ar9000058

    25. [25]

      Lewis J.C., Bergman R.G., Ellman J.A.. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation[J]. Acc. Chem. Res., 2008,41:1013-1025. doi: 10.1021/ar800042p

    26. [26]

      Alberico D., Scott M.E., Lautens M.. Aryl-aryl bond formation by transition-metalcatalyzed direct arylation[J]. Chem. Rev., 2007,107:174-238. doi: 10.1021/cr0509760

    27. [27]

      Kalyani D., Deprez N.R., Desai L.V., Sanford M.S.. Oxidative C-H activation/C-C bond forming reactions:synthetic scope and mechanistic insights[J]. J. Am. Chem. Soc., 2005,127:7330-7331. doi: 10.1021/ja051402f

    28. [28]

      Godula K., Sames D.. C-H bond functionalization in complex organic synthesis[J]. Science, 2006,312:67-72. doi: 10.1126/science.1114731

    29. [29]

      Lebrasseur N., Larrosa I.. Room temperature and phosphine free palladium catalyzed direct C-2 arylation of indoles[J]. J. Am. Chem. Soc., 2008,130:2926-2927. doi: 10.1021/ja710731a

    30. [30]

      Lane B.S., Brown M.A., Sames D.. Direct palladium-catalyzed C-2 and C-3 arylation of indoles:a mechanistic rationale for regioselectivity[J]. J. Am. Chem. Soc., 2005,127:8050-8057. doi: 10.1021/ja043273t

    31. [31]

      Daugulis O., Do H.Q.. Copper-catalyzed arylation and alkenylation of polyfluoroarene C-H bonds[J]. J. Am. Chem. Soc., 2008,130:1128-1129. doi: 10.1021/ja077862l

    32. [32]

      Phipps R.J., Gaunt M.J.. A meta-selective copper-catalyzed C-H bond arylation[J]. Science, 2009,323:1593-1597. doi: 10.1126/science.1169975

    33. [33]

      Yotphan S., Bergman R.G., Ellman J.A.. Application of daugulis copper-catalyzed direct arylation to the synthesis of 5-aryl benzotriazepines[J]. Org. Lett., 2009,11:1511-1514. doi: 10.1021/ol900103a

    34. [34]

      Chen D., Mo H.J., Chen D.B., Yang J.G.. Direct C-H amination for indole synthesis from N-Ts-2-Styrylaniline derivatives catalyzed by copper salt[J]. China Chem. Lett., 2015,26:969-972. doi: 10.1016/j.cclet.2015.04.020

    35. [35]

      Tan K.L., Bergman R.G., Ellman J.A.. Intermolecular coupling of isomerizable alkenes to heterocycles via rhodium-catalyzed C-H bond activation[J]. J. Am. Chem. Soc., 2002,124:13964-13965. doi: 10.1021/ja0281129

    36. [36]

      Guo H.M., Xia C., Niu H.Y.. Intermolecular hydrogen abstraction reaction between nitrogen radicals in purine rings and alkyl ethers:a highly selective method for the synthesis of N-9 alkylated purine nucleoside derivatives[J]. Adv. Synth. Catal., 2011,353:53-56. doi: 10.1002/adsc.201000682

    37. [37]

      Niu H.Y., Du C., Xie M.S.. Diversity-oriented synthesis of acyclic nucleosides via ring-opening of vinyl cyclopropanes with purines[J]. Chem. Commun., 2015,51:3328-3331. doi: 10.1039/C4CC09844G

    38. [38]

      Niu H.Y., Xia C., Qu G.R.. Microwave promoted one-pot synthesis of 4-nitrobenzylthioinosine analogues:using thiourea as a sulfur precursor[J]. Chem. Asian J., 2012,7:45-49. doi: 10.1002/asia.201100699

    39. [39]

      Li R.L., Liang L., Xie M.S.. Copper-catalyzed intramolecular cyclization of Npropargyl-adenine:synthesis of purine-fused polycyclics[J]. J. Org. Chem., 2014,79:3665-3670. doi: 10.1021/jo5001687

    40. [40]

      Xia R., Xie M.S., Niu H.Y., Qu G.R., Guo H.M.. Efficient synthesis of nebularine and vidarabine via dehydrazination of (hetero) aromatics catalyzed by CuSO4 in water[J]. Green Chem., 2014,16:1077-1081. doi: 10.1039/C3GC41658E

    41. [41]

      Xia R., Xie M.S., Niu H.Y., Qu G.R., Guo H.M.. Radical route for the alkylation of purine nucleosides at C6 via Minisci reaction[J]. Org. Lett., 2014,16:444-447. doi: 10.1021/ol4033336

  • 加载中
    1. [1]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    2. [2]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    6. [6]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    7. [7]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    8. [8]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    9. [9]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    10. [10]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    11. [11]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    12. [12]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    13. [13]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    14. [14]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    15. [15]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    16. [16]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    17. [17]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    18. [18]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    19. [19]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    20. [20]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

Metrics
  • PDF Downloads(3)
  • Abstract views(856)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return