Citation: Yao Ji-Yuan, Hou Hong-Hao, Ma Xiao-Dong, Xu Hong-Jie, Shi Zi-Xing, Yin Jie, Jiang Xue-Song. Combining photo-cleavable and hydrogen-abstracting groups in quinoxaline with thioether bond as hybrid photoinitiator[J]. Chinese Chemical Letters, ;2017, 28(1): 6-12. doi: 10.1016/j.cclet.2016.06.008 shu

Combining photo-cleavable and hydrogen-abstracting groups in quinoxaline with thioether bond as hybrid photoinitiator

  • Corresponding author: Jiang Xue-Song, ponygle@sjtu.edu.cn
  • Received Date: 6 May 2016
    Revised Date: 24 May 2016
    Accepted Date: 30 May 2016
    Available Online: 8 January 2016

Figures(12)

  • We synthesized four diphenylquinoxaline derivatives (SQs) with phenyl-thioether units, which combine photo-cleavable and hydrogen-abstracting groups in one molecule. The photochemistry and photopolymerization of SQs were investigated. SQs possess suitable UV vis absorption in the range of 350 400 nm with high extinction coefficients. UV vis and HPLC-MS spectra revealed that C-S bond in phenyl-thioether group of SQs can be broken by irradiation of UV-light. Photolysis and photopolymerization experiments showed that SQs can be used as photo-cleavable photointiators, their photoinitiating efficiency can be enhanced by hydrogen donor. As photo-cleavable photoinitiators, SQs could initiate hexamethylene diacrylate (HDDA) very efficiently with the double bond conversion (DBC) of 80%. In the presence of ethyl-4-(dimethylamino) benzoate (EDB) as coinitiator, photoinitiator systems initiated photopolymerization of commercial acrylate monomers with higher double bond conversion than 90%. These characteristics make SQs potential photoinitiators in photo-curing field.
  • 加载中
    1. [1]

      Aydogan C., Ciftci M., Yagci Y.. Hyperbranched polymers by Type Ⅱ photoinitiated self-condensing vinyl polymerization[J]. Macromol. Rapid Commun., 2016,37:650-654. doi: 10.1002/marc.v37.7

    2. [2]

      Qin X.H., Ovsianikov A., Stampfl J., Liska R.. Additive manufacturing of photosensitive hydrogels for tissue engineering applications[J]. BioNanoMaterials, 2014,15:49-70.  

    3. [3]

      Kou Y., Wang J.Y., Jian X.G.. A novel epoxy methacrylate resin containing phthalazinone moiety for UV coatings[J]. China Chem. Lett., 2007,18:598-600. doi: 10.1016/j.cclet.2007.03.024

    4. [4]

      Wang Y., Xiao P., Wu G.Q., Shi S.Q., Nie J.. Photopolymerization induced by a benzophenone derivative photoinitiator[J]. China Chem. Lett., 2007,18:977-980. doi: 10.1016/j.cclet.2007.06.012

    5. [5]

      Jiang X.S., Luo J., Yin J.. A novel amphipathic polymeric thioxanthone photoinitiator[J]. Polymer, 2009,50:37-41. doi: 10.1016/j.polymer.2008.10.038

    6. [6]

      Sun F., Li Y.X., Zhang N., Nie J.. Initiating gradient photopolymerization and migration of a novel polymerizable polysiloxane ǁ-hydroxy alkylphenones photoinitiator[J]. Polymer, 2014,55:3656-3665. doi: 10.1016/j.polymer.2014.06.040

    7. [7]

      Yin R.X., Wang K.M., Liu J.W., Nie J.. 1, 3-dioxane methylcoumarin as a novel photoinitiator for free radical polymerization[J]. J. Appl. Polym. Sci., 2012,125:2371-2375. doi: 10.1002/app.36491

    8. [8]

      Wang K.M., Lu Y.H., Chen P.H., Shi J.S., Wang H.N., Yu Q.. Novel one-component polymeric benzophenone photoinitiator containing poly (ethylene glycol) as hydrogen donor[J]. Mater. Chem. Phys., 2014,143:1391-1395. doi: 10.1016/j.matchemphys.2013.11.051

    9. [9]

      Balta D.K., Arsu N., Yagci Y.. Mechanism of photoinitiated free radical polymerization by thioxanthone-anthracene in the presence of air[J]. Macromolecules, 2011,44:2531-2535. doi: 10.1021/ma200147f

    10. [10]

      Lalev J., Dumur F., Tehfe M.A.. Dye photosensitized cationic ring-opening polymerization:search for new dye skeletons[J]. Polymer, 2012,53:4947-4954. doi: 10.1016/j.polymer.2012.08.067

    11. [11]

      Tehfe M.A., Dumur F., Graff B.. Design of new Type Ⅰ and type Ⅱ photoinitiators possessing highly coupled pyrene-ketone moieties[J]. Polym. Chem., 2013,4:2313-2324. doi: 10.1039/c3py21079k

    12. [12]

      Wang S.J., Fan X.D., Si Q.F., Kong J., Zhang G.B.. Synthesis and characterization of dendritic carbosilane based macrophotoinitiator[J]. Acta Polym. Sin., 2006,1:707-711.  

    13. [13]

      Esen D.S., Arsu N., Da Silva J.P., Jockusch S., Turro N.J.. Benzoin type photoinitiator for free radical polymerization[J]. J. Polym. Sci. Part A Polym. Chem., 2013,51:1865-1871. doi: 10.1002/pola.26569

    14. [14]

      Kork S., Yilmaz G., Yagci Y.. Poly (vinyl alcohol)-thioxanthone as one-component type Ⅱ photoinitiator for free radical polymerization in organic and aqueous media[J]. Macromol. Rapid Commun., 2015,36:923-928. doi: 10.1002/marc.v36.10

    15. [15]

      Dadashi-Silab S., Aydogan C., Yagci Y.. Shining a light on an adaptable photoinitiator:advances in photopolymerizations initiated by thioxanthones[J]. Polym. Chem., 2015,6:6595-6615. doi: 10.1039/C5PY01004G

    16. [16]

      Aydin M., Temel G., Balta D.K., Arsu N.. Mono" and "bifunctional" aromatic esterificated benzophenone photoinitiators for free radical polymerization[J]. Polym. Bull., 2015,72:309-322. doi: 10.1007/s00289-014-1274-3

    17. [17]

      Gacal B., Akat H., Balta D.K., Arsu N., Yagci Y.. Synthesis and characterization of polymeric thioxanthone photoinitatiors via double click reactions[J]. Macromolecules, 2008,41:2401-2405. doi: 10.1021/ma702502h

    18. [18]

      Griesser M., Rosspeintner A., Dworak C.. Initiators based on benzaldoximes:bimolecular and covalently bound systems[J]. Macromolecules, 2012,45:8646-8657.  

    19. [19]

      Neshchadin D., Rosspeintner A., Griesser M.. Acylgermanes:photoinitiators and sources for Ge-centered radicals. Insights into their reactivity[J]. J. Am. Chem. Soc., 2013,135:17314-17321. doi: 10.1021/ja404433u

    20. [20]

      Zhang J., Dumur F., Xiao P.. Structure design of naphthalimide derivatives:toward versatile photoinitiators for Near-UV/Visible LEDs, 3D printing, and water-soluble photoinitiating systems[J]. Macromolecules, 2015,48:2054-2063. doi: 10.1021/acs.macromol.5b00201

    21. [21]

      Zhang J., Zivic N., Dumur F.. A benzophenone-naphthalimide derivative as versatile photoinitiator of polymerization under near UV and visible lights[J]. J. Polym. Sci. Part A Polym. Chem., 2015,53:445-451. doi: 10.1002/pola.v53.3

    22. [22]

      Zhang J., Frigoli M., Dumur F.. Design of novel photoinitiators for radical and cationic photopolymerizations under near UV and visible LEDs (385, 395, and 405 nm)[J]. Macromolecules, 2014,47:2811-2819. doi: 10.1021/ma500612x

    23. [23]

      Do S.K., ruyol ğ, Do Z., ruyol ğ, Arsu N.. Thioxanthone based 9-[2-(methyl-phenylamino)-acetyl]-thia-naphthacene-12-one as a visible photoinitiator[J]. J. Lumin., 2013,138:98-104. doi: 10.1016/j.jlumin.2013.01.037

    24. [24]

      Temel G., Aydogan B., Arsu N., Yagci Y.. Synthesis and characterization of onecomponent polymeric photoinitiator by simultaneous double click reactions and its use in photoinduced free radical polymerization[J]. Macromolecules, 2009,42:6098-6106. doi: 10.1021/ma901162y

    25. [25]

      Arsu N., Ayd M.. Photoinduced free radical polymerization initiated with quinoxalines[J]. Die Angew. Makromol. Chem., 1999,270:1-4. doi: 10.1002/(ISSN)1522-9505

    26. [26]

      Ayd M., Arsu N.. Photoinitiated free radical polymerization of methylmethacrylate by using of quinoxalines in the presence of aldehydes[J]. Progr. Org. Coat., 2006,56:338-342. doi: 10.1016/j.porgcoat.2006.06.006

    27. [27]

      Jiang X.S., Luo X.W., Yin J.. Polymeric photoinitiators containing in-chain benzophenone and coinitiators amine:effect of the structure of coinitiator amine on photopolymerization[J]. J. Photochem. Photobiol. A:Chem., 2005,174:165-170. doi: 10.1016/j.jphotochem.2005.02.008

    28. [28]

      Jiang X.S., Yin J.. Water-soluble polymeric thioxanthone photoinitiator containing glucamine as coinitiator[J]. Macromol. Chem. Phys., 2008,209:1593-1600. doi: 10.1002/macp.v209:15

    29. [29]

      Luo A.F., Jiang X.S., Yin J.. Thioxanthone-containing renewable vegetable oil as photoinitiators[J]. Polymer, 2012,53:2183-2189.  

    30. [30]

      Hou H.H., Gan Y.C., Yin J., Jiang X.S.. Multifunctional POSS-based Nano-photoinitiator for overcoming the oxygen inhibition of photo-polymerization and for creating self-wrinkled patterns[J]. Adv. Mater. Interfaces, 2014,11400385. doi: 10.1002/admi.201400385

    31. [31]

      Sun L.D., Jiang X.S., Yin J.. Study of methoxyphenylquinoxalines (MOPQs) as photoinitiators in the negative photo-resist[J]. Progr. Org. Coat., 2010,67:225-232. doi: 10.1016/j.porgcoat.2009.12.005

    32. [32]

      Esen D.S., Karasu F., Arsu N.. The investigation of photoinitiated polymerization of multifunctional acrylates with TX-BT by Photo-DSC and RT-FTIR[J]. Progr. Org. Coat., 2011,70:102-107. doi: 10.1016/j.porgcoat.2010.10.010

    33. [33]

      Karasu F., Aydin M., Kaya M.A., Balta D.K., Arsu N.. Determination of photoinitiated polymerization of multifunctional acrylates with acetic acid derivatives of thioxanthone by RT-FTIR[J]. Progr. Org. Coat., 2009,64:1-4. doi: 10.1016/j.porgcoat.2008.07.004

    34. [34]

      Jiang X.S., Xu H.J., Yin J.. Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization[J]. Polymer, 2004,45:133-140. doi: 10.1016/j.polymer.2003.10.058

    35. [35]

      Martin G., Ascanio J.. Gas-phase thermolysis of methyl t-butyl sulfide[J]. React. Kinet. Catal. Lett., 1991,43:13-18. doi: 10.1007/BF02075405

    36. [36]

      Zheng X., Fisher E.M., Gouldin F.C., Zhu L., Bozzelli J.W.. Experimental and computational study of diethyl sulfide pyrolysis and mechanism[J]. Proc. Combust. Inst., 2009,32:469-476. doi: 10.1016/j.proci.2008.06.176

    37. [37]

      Martin G., Barroeta N.. Gas phase thermolysis of sulfur compounds. Ⅱ. Ditertiary butyl sulfide[J]. Inter. J. Chem. Kinetics, 1908,12:699-716.  

    38. [38]

      Plaza S., Celichowski G., Margielewski L., Leśniak S.. Flash thermolysis of dibenzyl and diphenyl disulphides[J]. Wear, 2000,237:295-299. doi: 10.1016/S0043-1648(99)00358-0

    39. [39]

      Balta D.K., Keskin S., Karasu F., Arsu N.. Quinoxaline derivatives as photoinitiators in UV-cured coatings[J]. Progr. Org. Coat., 2007,60:207-210. doi: 10.1016/j.porgcoat.2007.07.024

  • 加载中
    1. [1]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    2. [2]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    3. [3]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    4. [4]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    5. [5]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    6. [6]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    7. [7]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    8. [8]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    9. [9]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    10. [10]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    11. [11]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    12. [12]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    13. [13]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    18. [18]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    19. [19]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(1)
  • Abstract views(740)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return