Triplet fusion delayed fluorescence materials for OLEDs
- Corresponding author: Zhi-Yun Lu, luzhiyun@scu.edu.cn
Citation:
Yan-Ju Luo, Zhi-Yun Lu, Yan Huang. Triplet fusion delayed fluorescence materials for OLEDs[J]. Chinese Chemical Letters,
;2016, 27(8): 1223-1230.
doi:
10.1016/j.cclet.2016.06.002
C.W. Tang, S.A. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799
K.T. Kamtekar, A.P. Monkman, M.R. Bryce. Recent advances in white organic lightemitting materials and devices (WOLEDs)[J]. Adv. Mater., 2010,22:572-582. doi: 10.1002/adma.v22:5
C.J. Chiang, A. Kimyonok, M.K. Etherington. ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion[J]. Adv. Funct. Mater., 2013,23:739-746. doi: 10.1002/adfm.v23.6
P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4th ed., Oxford University Press, New York, 2005.
(a) Y. Chi, P.T. Chou, Transition-metal phosphors with cyclometalating ligands: fundamentals and applications, Chem. Soc. Rev. 39(2010) 638-655; (b) P.T. Chou, Y. Chi, M.W. Chung, et al., Harvesting luminescence via harnessing the photophysical properties of transition metal complexes, Chem. Soc. Rev. 255(2011) 2653-2665.
Y. Tao, K. Yuan, T. Chen. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J]. Adv. Mater., 2014,26:7931-7958. doi: 10.1002/adma.v26.47
(a) D.H. Hu, L. Yao, B. Yang, et al., Reverse intersystem crossing from upper triplet levels to excited singlet: a ‘hot excition’ path for organic light-emitting diodes, Philos. Trans. A: Math. Phys. 373(2015) 20140318; (b) L. Yao, B. Yang, Y.G. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics, Sci. China Chem. 57(2014) 335-345.
D.Y. Kondakov. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook[J]. Philos. Trans. A: Math. Phys. Eng. Sci., 2015,37320140321. doi: 10.1098/rsta.2014.0321
(a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, et al., A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes, J. Am. Chem. Soc. 138(2015) 628-634; (b) S. Hirata, Y. Sakai, K. Masui, et al., Highly efficient blue electroluminescence based on thermally activated delayed fluorescence, Nat. Mater. 14(2015) 330-336.
Y.F. Zhang, S.R. Forrest. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes[J]. Phys. Rev. Lett., 2012,108267404. doi: 10.1103/PhysRevLett.108.267404
D.Y. Kondakov. Characterization of triplet-triplet annihilation in organic lightemitting diodes based on anthracene derivatives[J]. J. Appl. Phys., 2007,102114504. doi: 10.1063/1.2818362
P.Y. Chou, H.H. Chou, Y.H. Chen. Efficient delayed fluorescence via triplettriplet annihilation for deep-blue electroluminescence[J]. Chem. Commun., 2014,50:6869-6871. doi: 10.1039/c4cc01851f
J. Jortner, S.I. Choi, J.L. Katz. Triplet energy transfer and triplet-triplet interaction in aromatic crystals[J]. Phys. Rev. Lett., 1963,11:323-326. doi: 10.1103/PhysRevLett.11.323
B. Dick, B. Nickel. Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an INDO CI study[J]. Chem. Phys., 1983,78:1-16. doi: 10.1016/0301-0104(83)87001-3
V. Jankus, M. Aydemir, F.B. Dias, et al., Generating light from upper excited triplet states: a contribution to the indirect singlet yield of a polymer OLED, helping to exceed the 25% singlet exciton limit, Adv. Sci. 3(2016), http://dx.doi.org/10.1002/advs.201500221.
C. Ganzorig, M. Fujihira. A possible mechanism for enhanced electrofluorescence emission through triplet-triplet annihilation in organic electroluminescent devices[J]. Appl. Phys. Lett., 2002,81:3137-3139. doi: 10.1063/1.1515129
D.Y. Kondakov, T.D. Pawlik, T.K. Hatwar. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes[J]. J. Appl. Phys., 2009,106124510. doi: 10.1063/1.3273407
P. Chen, Z.H. Xiong, Q.M. Peng. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplettriplet annihilation[J]. Adv. Opt. Mater., 2014,2:142-148. doi: 10.1002/adom.201300422
J. Xiang, Y.B. Chen, W.Y. Jia. Realization of triplet-triplet annihilation in planar heterojunction exciplex-based organic light-emitting diodes[J]. Org. Electron., 2016,28:94-99. doi: 10.1016/j.orgel.2015.10.017
C.A. Parker, C.G. Hatchard. Delayed fluorescence from solutions of anthracene and phenanthrene[J]. Proc. R. Soc. Lond. A: Math. Phys. Sci., 1962,269:574-584. doi: 10.1098/rspa.1962.0197
R.G. Kepler, J.C. Caris, P. Avakian. Triplet excitons and delayed fluorescence in anthracene crystals[J]. Phys. Rev. Lett., 1963,10:400-402. doi: 10.1103/PhysRevLett.10.400
J. Kido, Y. Iizumi. Fabrication of highly efficient organic electroluminescent devices[J]. Appl. Phys. Lett., 1998,73:2721-2723. doi: 10.1063/1.122570
Z.D. Popovic, H. Aziz. Delayed electroluminescence in small-molecule-based organic light-emitting diodes: evidence for triplet-triplet annihilation and recombination-center-mediated light-generation mechanism[J]. J. Appl. Phys., 2005,98013510. doi: 10.1063/1.1937472
C. Mayr, T.D. Schmidt, W. Brütting. High-efficiency fluorescent organic lightemitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation[J]. Appl. Phys. Lett., 2014,105183304. doi: 10.1063/1.4901341
A.H. Davis, K. Bussmann. Large magnetic field effects in organic light emitting diodes based on tris(8-hydroxyquinoline aluminum)(Alq3)/N,N'-di(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB) bilayers[J]. J. Vac. Sci. Technol. A, 2004,22:1885-1891.
(a) R. Liu, Y. Zhang, Y.L. Lei, et al., Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures, J. Appl. Phys. 105(2009) 093719; (b) Y.L. Lei, Y. Zhang, R. Liu, et al., Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode, Org. Electron. 10(2009) 889-894.
J.M. Shi, C.W. Tang. Anthracene derivatives for stable blue-emitting organic electroluminescence devices[J]. Appl. Phys. Lett., 2002,80:3201-3203. doi: 10.1063/1.1475361
(a) H. Zhang, H. Tong, Y.L. Zhao, et al., Synthesis, crystal structures and photoluminescence of anthracene- and pyrene-based coumarin derivatives, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 150(2015) 316-320; (b) K.A. Nguyen, J. Kennel, R. Pachter, A density functional theory study of phosphorescence and triplet-triplet absorption for nonlinear absorption chromophores, J. Chem. Phys. 117(2002) 7128-7136.
L. Ma, K.K. Zhang, C. Kloc. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy[J]. Phys. Chem. Chem. Phys., 2012,14:8307-8312. doi: 10.1039/c2cp40449d
M. Pope, H.P. Kallmann, P. Magnante. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963,38:2042-2043. doi: 10.1063/1.1733929
M.R. Zhu, C.L. Yang. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes[J]. Chem. Soc. Rev., 2013,42:4963-4976. doi: 10.1039/c3cs35440g
Y.C. Luo, H. Aziz. Correlation between triplet-triplet annihilation and electroluminescence efficiency in doped fluorescent organic light-emitting devices[J]. Adv. Funct. Mater., 2010,20:1285-1293. doi: 10.1002/adfm.v20:8
C.H. Liao, M.T. Lee, C.H. Tsai. Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer[J]. Appl. Phys. Lett., 2005,86203507. doi: 10.1063/1.1931052
Y.J. Pu, G. Nakata, F. Satoh. Optimizing the charge balance of fluorescent organic light-emitting devices to achieve high external quantum efficiency beyond the conventional upper limit[J]. Adv. Mater., 2012,24:1765-1770. doi: 10.1002/adma.201104403
D.Y. Kondakov. Role of triplet-triplet annihilation in highly efficient fluorescent devices[J]. J. Soc. Info. Display, 2009,17:137-144. doi: 10.1889/JSID17.2.137
S.K. Kim, B. Yang, Y.Q. Ma. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design[J]. J. Mater. Chem., 2008,18:3376-3384. doi: 10.1039/b805062g
D. Yokoyama, Y. Park, B. Kim. Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic lightemitting diodes[J]. Appl. Phys. Lett., 2011,99123303. doi: 10.1063/1.3637608
I. Cho, S.H. Kim, J.H. Kim. Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications[J]. J. Mater. Chem., 2012,22:123-129. doi: 10.1039/C1JM14482K
W.C. Chen, C.S. Lee, Q.X. Tong. Blue-emitting organic electrofluorescence materials: progress and prospective[J]. J. Mater. Chem., 2015,3:10957-10963.
T. Suzuki, Y. Nonaka, T. Watabe. Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting material[J]. Jpn. J. Appl. Phys., 2014,53052102. doi: 10.7567/JJAP.53.052102
K. Okumoto, H. Kanno, Y. Hamada. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%[J]. Appl. Phys. Lett., 2006,89063504. doi: 10.1063/1.2266452
H. Fukagawa, T. Shimizu, N. Ohbe. Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet-triplet annihilation[J]. Org. Electron., 2012,13:1197-1203. doi: 10.1016/j.orgel.2012.03.019
Y.Y. Lyu, J. Kwak, O. Kwon. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices[J]. Adv. Mater., 2008,20:2720-2729. doi: 10.1002/adma.v20:14
J.Y. Hu, Y.J. Pu, F. Satoh. Bisanthracene-based donor-acceptor-type lightemitting dopants: highly efficient deep-blue emission in organic light-emitting devices[J]. Adv. Funct. Mater., 2014,24:2064-2071. doi: 10.1002/adfm.v24.14
J.P. Spindler, W.J. Begley, T.K. Hatwar. 30.4: high-efficiency fluorescent redand yellow-emitting OLED devices[J]. SID Int. Symp. Digest Tech. Pap., 2009,40:420-423. doi: 10.1889/1.3256804
J. Xue, C. Li, L.J. Xin. High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion[J]. Chem. Sci., 2016,7:2888-2895. doi: 10.1039/C5SC04685H
V. Jankus, C.J. Chiang, F. Dias. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons?[J]. Adv. Mater., 2013,25:1455-1459. doi: 10.1002/adma.v25.10
F.B. Dias, K.N. Bourdakos, V. Jankus. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters[J]. Adv. Mater., 2013,25:3707-3714. doi: 10.1002/adma.v25.27
(a) J. Zhou, P. Chen, X. Wang. Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion, Chem. Commun., 2014,50: 7586-7589; (b) X.J. Zheng, Q.M. Peng, J. Lin, et al., Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation[J]. J. Mater. Chem. C, 2015,3:6970-6978.
S.J. Cha, N.S. Han, J.K. Song. Efficient deep blue fluorescent emitter showing high external quantum efficiency[J]. Dyes Pigm., 2015,120:200-207. doi: 10.1016/j.dyepig.2015.04.020
Y.H. Chen, C.C. Lin, M.J. Huang. Superior upconversion fluorescence dopants for highly efficient deep-Blue electroluminescent devices[J]. Chem. Sci., 2016,7:4044-4051. doi: 10.1039/C6SC00100A
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Hui Peng , Xiao Wang , Weiguo Huang , Shuiyue Yu , Linghang Kong , Qilin Wei , Jialong Zhao , Bingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430