Citation: Cheng Zhang, Xiao-Zhang Zhu. The impact of regiochemistry of conjugated molecules on the performance of organic electronic devices[J]. Chinese Chemical Letters, ;2016, 27(8): 1357-1366. doi: 10.1016/j.cclet.2016.05.033 shu

The impact of regiochemistry of conjugated molecules on the performance of organic electronic devices

  • Corresponding author: Xiao-Zhang Zhu, electronics.xzzhu@iccas.ac.cn
  • Received Date: 28 April 2016
    Revised Date: 25 May 2016
    Accepted Date: 30 May 2016
    Available Online: 11 August 2016

Figures(6)

  • Organic photovoltaics and field-effect transistors have attracted considerable attention due to the easy fabrication, low cost, light weight, and flexibility. Unsymmetrical conjugated building blocks are widely utilized for the design of new organic π-functional materials in order to achieve high-performance electronic devices, which has become a hot research topic in recent years. In this review, we summarized some typical organic π-functional materials with regioregular conjugated backbones with unsymmetrical electron-deficiency moieties and focused on the influence of regiochemistry on the final device performance.
  • 加载中
    1. [1]

      G. Li, R. Zhu, Y. Yang. Polymer solar cells[J]. Nat. Photon., 2012,6:153-161. doi: 10.1038/nphoton.2012.11

    2. [2]

      Q. Peng, K. Park, T. Lin, M. Durstock, L.M. Dai. Donor-π-acceptor conjugated copolymers for photovoltaic applications: tuning the open-circuit voltage by adjusting the donor/acceptor ratio[J]. J. Phys. Chem. B, 2008,112:2801-2808. doi: 10.1021/jp7105428

    3. [3]

      J. Peet, J.Y. Kim, N.E. Coates. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat. Mater., 2007,6:497-500. doi: 10.1038/nmat1928

    4. [4]

      Y.Y. Liang, Z. Xu, J.B. Xia. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Adv. Mater., 2010,22:E135-E138. doi: 10.1002/adma.200903528

    5. [5]

      Y. Diao, B.C.K. Tee, G. Giri. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains[J]. Nat. Mater., 2013,12:665-671. doi: 10.1038/nmat3650

    6. [6]

      R.D. McCullough. The chemistry of conducting polythiophenes[J]. Adv. Mater., 1998,10:93-116. doi: 10.1002/(ISSN)1521-4095

    7. [7]

      I. Osaka, R.D. McCullough. Advances in molecular design and synthesis of regioregular polythiophenes[J]. Acc. Chem. Res., 2008,41:1202-1214. doi: 10.1021/ar800130s

    8. [8]

      N. Blouin, A. Michaud, D. Gendron. Toward a rational design of poly(2, 7-Carbazole) derivatives for solar cells[J]. J. Am. Chem. Soc., 2008,130:732-742. doi: 10.1021/ja0771989

    9. [9]

      M.C. Scharber, D. Mühlbacher, M. Koppe. Design rules for donors in bulkheterojunction solar cells-towards 10% energy-conversion efficiency[J]. Adv. Mater., 2006,18:789-794. doi: 10.1002/(ISSN)1521-4095

    10. [10]

      Y.M. Sun, G.C. Welch, W.L. Leong. Solution-processed small-molecule solar cells with 6.7% efficiency[J]. Nat. Mater., 2012,11:44-48.  

    11. [11]

      C.J. Takacs, Y.M. Sun, G.C. Welch. Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules[J]. J. Am. Chem. Soc., 2012,134:16597-16606. doi: 10.1021/ja3050713

    12. [12]

      S. Steinberger, A. Mishra, E. Reinold. Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes[J]. Chem. Commun., 2011,47:1982-1984. doi: 10.1039/c0cc04541a

    13. [13]

      R.F. He, L. Yu, P. Cai. Narrow-band-gap conjugated polymers based on 2,7-dioctyl-substituted dibenzo[J]. Macromolecules, 2014,47:2921-2928. doi: 10.1021/ma500333r

    14. [14]

      Y.Q. Wu, H.C. Chen, Y.S. Yang. Comprehensive study of pyrido[J]. J. Polym. Sci. Part A: Polym. Chem., 2016,54:1822-1833. doi: 10.1002/pola.28044

    15. [15]

      H.X. Zhou, L.Q. Yang, S.C. Price, K.J. Knight, W. You. Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO Levels[J]. Angew. Chem. Int. Ed., 2010,49:7992-7995. doi: 10.1002/anie.v49:43

    16. [16]

      Y. Sun, S.C. Chien, H.L. Yip. High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3, 4-c]pyridine units for thin film transistor and photovoltaic applications[J]. J. Mater. Chem., 2011,21:13247-13255. doi: 10.1039/c1jm11564b

    17. [17]

      W.T. Li, L. Yan, H.X. Zhou, W. You. A general approach toward electron deficient triazole units to construct conjugated polymers for solar cells[J]. Chem. Mater., 2015,27:6470-6476. doi: 10.1021/acs.chemmater.5b03098

    18. [18]

      L. Ying, B.B.Y. Hsu, H.M. Zhan. Regioregular pyridal[2,1,3] thiadiazole π-conjugated copolymers[J]. J. Am. Chem. Soc., 2011,133:18538-18541. doi: 10.1021/ja207543g

    19. [19]

      M. Wang, H.B. Wang, T. Yokoyama. High open circuit voltage in regioregular narrow band gap polymer solar cells[J]. J. Am. Chem. Soc., 2014,136:12576-12579. doi: 10.1021/ja506785w

    20. [20]

      W. Wen, L. Ying, B.B.Y. Hsu. Regioregular pyridyl[2,1,3] thiadiazole-coindacenodithiophene conjugated polymers[J]. Chem. Commun., 2013,49:7192-7194. doi: 10.1039/c3cc43229g

    21. [21]

      X.F. Liu, Y.M. Sun, L.A. Perez. Narrow-band-gap conjugated chromophores with extended molecular lengths[J]. J. Am. Chem. Soc., 2012,134:20609-20612. doi: 10.1021/ja310483w

    22. [22]

      Y. Kim, S. Cook, S.M. Tuladhar. A strong regioregularity effect in selforganizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells[J]. Nat. Mater, 2006,5:197-203. doi: 10.1038/nmat1574

    23. [23]

      C.H. Woo, B.C. Thompson, B.J. Kim, M.F. Toney, J.M.J. Fréchet. The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance[J]. J. Am. Chem. Soc., 2008,130:16324-16329. doi: 10.1021/ja806493n

    24. [24]

      L.A. Perez, P. Zalar, L. Ying. Effect of backbone regioregularity on the structure and orientation of a donor-acceptor semiconducting copolymer[J]. Macromolecules, 2014,47:1403-1410. doi: 10.1021/ma4019679

    25. [25]

      H.R. Tseng, H. Phan, C. Luo. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers[J]. Adv. Mater., 2014,26:2993-2998. doi: 10.1002/adma.201305084

    26. [26]

      C. Luo, A.K.K. Kyaw, L.A. Perez. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility[J]. Nano Lett., 2014,14:2764-2771. doi: 10.1021/nl500758w

    27. [27]

      A.C. Stuart, J.R. Tumbleston, H.X. Zhou. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells[J]. J. Am. Chem. Soc., 2013,135:1806-1815. doi: 10.1021/ja309289u

    28. [28]

      Z. Qiao, M. Wang, M.Z. Zhao. Effect of fluorine substitution on the photovoltaic performance of poly (thiophene-quinoxaline) copolymers[J]. Polym. Chem., 2015,6:8203-8213. doi: 10.1039/C5PY01193K

    29. [29]

      P. Verstappen, J. Kesters, W. Vanormelingen. Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b: 3, 4-b0] dithiophene-alt-quinoxaline) copolymers[J]. J. Mater. Chem. A, 2015,3:2960-2970. doi: 10.1039/C4TA06054G

    30. [30]

      P.Y. Yang, M.J. Yuan, D.F. Zeigler. Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics[J]. J. Mater. Chem. C, 2014,2:3278-3284. doi: 10.1039/C3TC32087A

    31. [31]

      J.W. Jo, J.W. Jung, E.H. Jung. Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells[J]. Energy Environ. Sci., 2015,8:2427-2434. doi: 10.1039/C5EE00855G

    32. [32]

      S. Albrecht, S. Janietz, W. Schindler. Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells[J]. J. Am. Chem. Soc., 2012,134:14932-14944. doi: 10.1021/ja305039j

    33. [33]

      Y.X. Li, J.Y. Zou, H.L. Yip. Side-chain effect on cyclopentadithiophene/fluorobenzothiadiazole-based low band gap polymers and their applications for polymer solar cells[J]. Macromolecules, 2013,46:5497-5503. doi: 10.1021/ma4009302

    34. [34]

      Q. Peng, X.J. Liu, D. Su. Novel benzo[1,2-b:4, 5-b'] dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells[J]. Adv. Mater., 2011,23:4554-4558. doi: 10.1002/adma.201101933

    35. [35]

      G.W. Li, B.F. Zhao, C. Kang. Side Chain Influence on the morphology and photovoltaic performance of 5-fluoro-6-alkyloxybenzothiadiazole and benzodithiophene based conjugated polymers[J]. ACS Appl. Mater. Interfaces, 2015,7:10710-10717. doi: 10.1021/acsami.5b00026

    36. [36]

      G.W. Li, C. Kang, X. Gong. 5-Alkyloxy-6-fluorobenzo[c][1,2,5] thiadiazoleand silafluorene-based D-A alternating conjugated polymers: synthesis and application in polymer photovoltaic cells[J]. Macromolecules, 2014,47:4645-4652. doi: 10.1021/ma500417r

    37. [37]

      J. Kim, M.H. Yun, G.H. Kim. Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control[J]. ACS Appl. Mater. Interfaces, 2014,6:7523-7534. doi: 10.1021/am500891z

    38. [38]

      K. Li, Z.J. Li, K. Feng. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J. Am. Chem. Soc., 2013,135:13549-13557. doi: 10.1021/ja406220a

    39. [39]

      T.S. Qin, W. Zajaczkowski, W. Pisula. Tailored donor-acceptor polymers with an A-D1-A-D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices[J]. J. Am. Chem. Soc., 2014,136:6049-6055. doi: 10.1021/ja500935d

    40. [40]

      J.L. Wang, Q.R. Yin, J.S. Miao. Rational design of small molecular donor for solution-processed organic photovoltaics with 8.1% efficiency and high fill factor via multiple fluorine substituents and thiophene bridge[J]. Adv. Funct. Mater., 2015,25:3514-3523. doi: 10.1002/adfm.v25.23

    41. [41]

      J.L. Wang, F. Xiao, J. Yan. Difluorobenzothiadiazole-based small-molecule organic solar cells with 8.7% efficiency by tuning of π-conjugated spacers and solvent vapor annealing[J]. Adv. Funct. Mater., 2016,26:1803-1812. doi: 10.1002/adfm.v26.11

    42. [42]

      L. Yuan, Y.F. Zhao, J.Q. Zhang. Oligomeric donor material for high-efficiency organic solar cells: breaking down a polymer[J]. Adv. Mater., 2015,27:4229-4233. doi: 10.1002/adma.v27.28

    43. [43]

      T.S. van der Poll, J.A. Love, T.Q. Nguyen, G.C. Bazan. Non-basic high-performance molecules for solution-processed organic solar cells[J]. Adv. Mater., 2012,24:3646-3649. doi: 10.1002/adma.v24.27

    44. [44]

      L.F. Lai, J.A. Love, A. Sharenko. Topological considerations for the design of molecular donors with multiple absorbing units[J]. J. Am. Chem. Soc., 2014,136:5591-5594. doi: 10.1021/ja501711m

    45. [45]

      V. Gupta, A.K.K. Kyaw, D.H. Wang. Barium: an efficient cathode layer for bulk-heterojunction solar cells[J]. Sci. Rep., 2013,31965.  

    46. [46]

      A.K.K. Kyaw, D.H. Wang, D. Wynands. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells[J]. Nano Lett., 2013,13:3796-3801. doi: 10.1021/nl401758g

    47. [47]

      J.S. Miao, H. Chen, F. Liu. Efficiency enhancement in solution-processed organic small molecule: fullerene solar cells via solvent vapor annealing[J]. Appl. Phys. Lett., 2015,106183302. doi: 10.1063/1.4919707

    48. [48]

      Y.M. Sun, J. Seifter, L.J. Huo. High-performance solution-processed smallmolecule solar cells based on a dithienogermole-containing molecular donor[J]. Adv. Energy Mater., 2015,51400987. doi: 10.1002/aenm.201400987

    49. [49]

      M. Moon, B. Walker, J. Lee. Dithienogermole-containing small-molecule solar cells with 7.3% efficiency: in-depth study on the effects of heteroatom substitution of Si with Ge[J]. Adv. Energy Mater., 2015,51402044. doi: 10.1002/aenm.201402044

    50. [50]

      J.J. Intemann, K. Yao, F.Z. Ding. Enhanced performance of organic solar cells with increased end group dipole moment in indacenodithieno[3,2-b]thiophenebased molecules[J]. Adv. Funct. Mater., 2015,25:4889-4897. doi: 10.1002/adfm.201501600

    51. [51]

      J.A. Love, I. Nagao, Y. Huang. Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant, high-efficiency bulk heterojunction solar cells[J]. J. Am. Chem. Soc., 2014,136:3597-3606. doi: 10.1021/ja412473p

    52. [52]

      J.A. Love, S.D. Collins, I. Nagao. Interplay of solvent additive concentration and active layer thickness on the performance of small molecule solar cells[J]. Adv. Mater., 2014,26:7308-7316. doi: 10.1002/adma.v26.43

    53. [53]

      K. Wang, B. Guo, Z. Xu. Solution-processable organic molecule for highperformance organic solar cells with low acceptor content[J]. ACS Appl. Mater. Interfaces, 2015,7:24686-24693. doi: 10.1021/acsami.5b07085

    54. [54]

      X.F. Liu, B.B.Y. Hsu, Y.M. Sun. High thermal stability solution-processable narrow-band gap molecular semiconductors[J]. J. Am. Chem. Soc., 2014,136:16144-16147. doi: 10.1021/ja510088x

    55. [55]

      J. Lee, M. Jang, S.M. Lee. Fluorinated benzothiadiazole (BT) groups as a powerful unit for high-performance electron-transporting polymers[J]. ACS Appl. Mater. Interfaces, 2014,6:20390-20399. doi: 10.1021/am505925w

    56. [56]

      M. Wang, M. Ford, H. Phan. Fluorine substitution influence on benzo[2,1,3] thiadiazole based polymers for field-effect transistor applications[J]. Chem. Commun., 2016,52:3207-3210. doi: 10.1039/C5CC10009G

    57. [57]

      L.T. Dou, J.B. You, Z.R. Hong. 25th anniversary article: a decade of organic/polymeric photovoltaic research[J]. Adv. Mater, 2013,25:6642-6671. doi: 10.1002/adma.v25.46

    58. [58]

      F. Liu, G.L. Espejo, S.H. Qiu. Multifaceted regioregular oligo(thieno[3,4-b]thiophene)s enabled by tunable quinoidization and reduced energy band gap[J]. J. Am. Chem. Soc., 2015,137:10357-10366. doi: 10.1021/jacs.5b05940

    59. [59]

      Y.Y. Lina, L.P. Yu. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Acc. Chem. Res., 2010,43:1227-1236. doi: 10.1021/ar1000296

    60. [60]

      H.J. Son, W. Wang, T. Xu. Synthesis of fluorinated polythienothiophene-cobenzodithiophenes and effect of fluorination on the photovoltaic properties[J]. J. Am. Chem. Soc., 2011,133:1885-1894. doi: 10.1021/ja108601g

    61. [61]

      Z.C. He, C.M. Zhong, S.J. Su. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012,6:591-595.  

    62. [62]

      L.J. Huo, S.Q. Zhang, X. Guo. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers[J]. Angew. Chem. Int. Ed., 2011,50:9697-9702. doi: 10.1002/anie.201103313

    63. [63]

      Z.C. He, B. Xiao, F. Liu. Single-junction polymer solar cells with high efficiency and photovoltage[J]. Nat. Photon., 2015,9:174-179. doi: 10.1038/nphoton.2015.6

    64. [64]

      H.Q. Zhou, Y. Zhang, C.K. Mai. Polymer homo-tandem solar cells with best efficiency of 11.3%[J]. Adv. Mater., 2015,27:1767-1773. doi: 10.1002/adma.201404220

    65. [65]

      L. Ye, S.Q. Zhang, W.C. Zhao, H.F. Yao, J.H. Hou. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain[J]. Chem. Mater., 2014,26:3603-3605. doi: 10.1021/cm501513n

    66. [66]

      H.F. Yao, H. Zhang, L. Ye. Molecular design and application of a photovoltaic polymer with improved optical properties and molecular energy levels[J]. Macromolecules, 2015,48:3493-3499. doi: 10.1021/acs.macromol.5b00649

    67. [67]

      J.H. Kim, C.E. Song, B.S. Kim. Thieno[3,2-b]thiophene-substituted benzo[1,2-b: 4, 5-b'] dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells[J]. Chem. Mater., 2014,26:1234-1242. doi: 10.1021/cm4035903

    68. [68]

      M.J. Zhang, X. Guo, S.Q. Zhang, J.H. Hou. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers[J]. Adv. Mater., 2014,26:1118-1123. doi: 10.1002/adma.201304427

    69. [69]

      H.L. Zhong, C.Z. Li, J. Carpenter, H. Ade, A.K.Y. Jen. Influence of regio-and chemoselectivity on the properties of fluoro-substituted thienothiophene and benzodithiophene copolymers[J]. J. Am. Chem. Soc., 2015,137:7616-7619. doi: 10.1021/jacs.5b04209

    70. [70]

      H.F. Yao, W.C. Zhao, Z. Zheng. PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure[J]. J. Mater. Chem. A, 2016,4:1708-1713. doi: 10.1039/C5TA08614K

    71. [71]

      H. Kim, H. Lee, D. Seo. Regioregular low bandgap polymer with controlled thieno[3,4-b]thiophene orientation for high-efficiency polymer solar cells[J]. Chem. Mater., 2015,27:3102-3107. doi: 10.1021/acs.chemmater.5b00632

    72. [72]

      C. Zhang, H. Li, J.Z. Wang. Low-bandgap thieno[3,4-c]pyrrole-4, 6-dionepolymers for high-performance solar cells with significantly enhanced photocurrents[J]. J. Mater. Chem. A, 2015,3:11194-11198. doi: 10.1039/C5TA02376A

    73. [73]

      C. Zhang, Y.P. Zang, E. Gann. Two-dimensional π-expanded quinoidal terthiophenes terminated with dicyanomethylenes as n-type semiconductors for high-performance organic thin-film transistors[J]. J. Am. Chem. Soc., 2014,136:16176-16184. doi: 10.1021/ja510003y

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    3. [3]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    4. [4]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    5. [5]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    6. [6]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    7. [7]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    8. [8]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    9. [9]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    10. [10]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    11. [11]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    13. [13]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    16. [16]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    17. [17]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    20. [20]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return