Citation: Zhao-Yang Zhang, Tao Li. Single-chain and monolayered conjugated polymers for molecular electronics[J]. Chinese Chemical Letters, ;2016, 27(8): 1209-1222. doi: 10.1016/j.cclet.2016.05.031 shu

Single-chain and monolayered conjugated polymers for molecular electronics

  • Corresponding author: Tao Li, litao1983@sjtu.edu.cn
  • Received Date: 3 May 2016
    Revised Date: 18 May 2016
    Accepted Date: 23 May 2016
    Available Online: 3 August 2016

Figures(19)

  • Exploring the charge transport properties and electronic functions of molecules is of primary interest in the area of molecular electronics. Conjugated polymers (CPs) represent an attractive class of molecular candidates, benefiting from their outstanding optoelectronic properties. However, they have been less studied compared with the small-molecule family, mainly due to the difficulties in incorporating CPs into molecular junctions. In this review, we present a summary on how to fabricate CP-based singlechain and monolayered junctions, then discuss the transport behaviors of CPs in different junction architectures and finally introduce the potential applications of CPs in molecular-scale electronic devices. Although the research on CP-based molecular electronics is still at the initial stage, it is widely accepted that (1) CP chains are able to mediate long-range charge transport if their molecular electronic structures are properly designed, which makes them potential molecular wires, and (2) the intrinsic optoelectronic properties of CPs and the possibility of incorporating desirable functionalities by synthetic strategies imply the potential of employing tailor-made polymeric components as alternatives to small molecules for future molecular-scale electronics.
  • 加载中
    1. [1]

      D. Xiang, X. Wang, C. Jia. Molecular-scale electronics: from concept to function[J]. Chem. Rev., 2016,116:4318-4440. doi: 10.1021/acs.chemrev.5b00680

    2. [2]

      R.M. Metzger. Unimolecular electronics[J]. Chem. Rev., 2015,115:5056-5115. doi: 10.1021/cr500459d

    3. [3]

      B. Mann. Tunneling through fatty acid salt monolayers[J]. J. Appl. Phys., 1971,42:4398-4405. doi: 10.1063/1.1659785

    4. [4]

      A. Aviram, M.A. Ratner. Molecular rectifiers[J]. Chem. Phys. Lett., 1974,29:277-283. doi: 10.1016/0009-2614(74)85031-1

    5. [5]

      L. Sun, Y.A. Diaz-Fernandez, T.A. Gschneidtner. Single-molecule electronics: from chemical design to functional devices[J]. Chem. Soc. Rev., 2014,43:7378-7411. doi: 10.1039/C4CS00143E

    6. [6]

      A. Facchetti. p-Conjugated polymers for organic electronics and photovoltaic cell applications[J]. Chem. Mater., 2011,23:733-758. doi: 10.1021/cm102419z

    7. [7]

      L. Luo, S.H. Choi, C.D. Frisbie. Probing hopping conduction in conjugated molecular wires connected to metal electrodes[J]. Chem. Mater., 2011,23:631-645. doi: 10.1021/cm102402t

    8. [8]

      H. Yan, A.J. Bergren, R. McCreery. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions[J]. Proc. Natl. Acad. Sci. U.S.A., 2013,110:5326-5330. doi: 10.1073/pnas.1221643110

    9. [9]

      H. Liu, N. Wang, J. Zhao. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions[J]. ChemPhysChem, 2008,9:1416-1424. doi: 10.1002/cphc.v9:10

    10. [10]

      S.H. Choi, B. Kim, C.D. Frisbie. Electrical resistance of long conjugated molecular wires[J]. Science, 2008,320:1482-1486. doi: 10.1126/science.1156538

    11. [11]

      T. Li, W. Hu, D. Zhu. Nanogap electrodes[J]. Adv. Mater., 2010,22:286-300. doi: 10.1002/adma.v22:2

    12. [12]

      H.X. He, X.L. Li, N.J. Tao. Discrete conductance switching in conducting polymer wires[J]. Phys. Rev. B, 2003,68045302. doi: 10.1103/PhysRevB.68.045302

    13. [13]

      M. Taniguchi, Y. Nojima, K. Yokota. Self-organized interconnect method for molecular devices[J]. J. Am. Chem. Soc., 2006,128:15062-15063. doi: 10.1021/ja065806z

    14. [14]

      H. Ozawa, M. Kawao, S. Uno. A photo-responsive molecular wire composed of a porphyrin polymer and a fullerene derivative[J]. J. Mater. Chem., 2009,19:8307-8313. doi: 10.1039/b910638c

    15. [15]

      W.P. Hu, J. Jiang, H. Nakashima. Electron transport in self-assembled polymer molecular junctions[J]. Phys. Rev. Lett., 2006,96027801. doi: 10.1103/PhysRevLett.96.027801

    16. [16]

      M.J. Frampton, H.L. Anderson. Insulated molecular wires[J]. Angew. Chem. Int. Ed., 2007,46:1028-1064. doi: 10.1002/(ISSN)1521-3773

    17. [17]

      C. Pan, C. Zhao, M. Takeuchi. Conjugated oligomers and polymers sheathed with designer side chains[J]. Chem. Asian J., 2015,10:1820-1835. doi: 10.1002/asia.201500452

    18. [18]

      J. Terao, Y. Tsuji. New synthetic methods of p-conjugated inclusion complexes with high conductivity[J]. J. Incl. Phenom. Macrocycl. Chem., 2014,80:165-175. doi: 10.1007/s10847-014-0381-y

    19. [19]

      T. Shimomura, T. Akai, T. Abe. Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube[J]. J. Chem. Phys., 2002,116:1753-1756. doi: 10.1063/1.1446423

    20. [20]

      J.S. Wilson, M.J. Frampton, J.J. Michels. Supramolecular complexes of conjugated polyelectrolytes with poly(ethylene oxide): multifunctional luminescent semiconductors exhibiting electronic and ionic transport[J]. Adv. Mater., 2005,17:2659-2663. doi: 10.1002/(ISSN)1521-4095

    21. [21]

      J. Terao, Y. Tanaka, S. Tsuda. Insulated molecular wire with highly conductive π-conjugated polymer core[J]. J. Am. Chem. Soc., 2009,131:18046-18047. doi: 10.1021/ja908783f

    22. [22]

      H. Masai, J. Terao, S. Seki. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials[J]. J. Am. Chem. Soc., 2014,136:1742-1745. doi: 10.1021/ja411665k

    23. [23]

      T. Shimomura, T. Akai, M. Fujimori. Conductivity measurement of insulated molecular wire formed by molecular nanotube and polyaniline[J]. Synth. Met., 2005,153:497-500. doi: 10.1016/j.synthmet.2005.07.305

    24. [24]

      L. Lafferentz, F. Ample, H. Yu. Conductance of a single conjugated polymer as a continuous function of its length[J]. Science, 2009,323:1193-1197. doi: 10.1126/science.1168255

    25. [25]

      G. Reecht, F. Scheurer, V. Speisser. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope[J]. Phys. Rev. Lett., 2014,112047403. doi: 10.1103/PhysRevLett.112.047403

    26. [26]

      G. Reecht, H. Bulou, F. Scheurer. Pulling and stretching a molecular wire to tune its conductance[J]. J. Phys. Chem. Lett., 2015,6:2987-2992. doi: 10.1021/acs.jpclett.5b01283

    27. [27]

      C. Nacci, F. Ample, D. Bleger. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units[J]. Nat. Commun., 2015,67397. doi: 10.1038/ncomms8397

    28. [28]

      M. Koch, F. Ample, C. Joachim. Voltage-dependent conductance of a single graphene nanoribbon[J]. Nat. Nanotechnol., 2012,7:713-717. doi: 10.1038/nnano.2012.169

    29. [29]

      L. Lafferentz, V. Eberhardt, C. Dri. Controlling on-surface polymerization by hierarchical and substrate-directed growth[J]. Nat. Chem., 2012,4:215-220. doi: 10.1038/nchem.1242

    30. [30]

      J.A. Lipton-Duffin, J.A. Miwa, M. Kondratenko. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction[J]. Proc. Natl. Acad. Sci. U.S.A., 2010,107:11200-11204. doi: 10.1073/pnas.1000726107

    31. [31]

      J.A. Lipton-Duffin, O. Ivasenko, D.F. Perepichka. Synthesis of polyphenylene molecular wires by surface-confined polymerization[J]. Small, 2009,5:592-597. doi: 10.1002/smll.v5:5

    32. [32]

      L. Grill, M. Dyer, L. Lafferentz. Nano-architectures by covalent assembly of molecular building blocks[J]. Nat. Nanotechnol., 2007,2:687-691. doi: 10.1038/nnano.2007.346

    33. [33]

      M. Matena, T. Riehm, M. Stöhr. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates[J]. Angew. Chem. Int. Ed., 2008,47:2414-2417. doi: 10.1002/(ISSN)1521-3773

    34. [34]

      B. Cirera, Y. Zhang, J. Björk. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Lett., 2014,14:1891-1897. doi: 10.1021/nl4046747

    35. [35]

      X.H. Liu, C.Z. Guan, Q.N. Zheng. Molecular engineering of Schiff-base linked covalent polymers with diverse topologies by gas-solid interface reaction[J]. J. Chem. Phys., 2015,142101905. doi: 10.1063/1.4906271

    36. [36]

      Z. Gong, B. Yang, H. Lin. Structural variation in surface-supported synthesis by adjusting the stoichiometric ratio of the reactants[J]. ACS Nano, 2016,10:4228-4235. doi: 10.1021/acsnano.5b07601

    37. [37]

      R.L. McCreery, A.J. Bergren. Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication[J]. Adv. Mater., 2009,21:4303-4322. doi: 10.1002/adma.v21:43

    38. [38]

      S.H. Choi, C.D. Frisbie. Enhanced hopping conductivity in low band gap donoracceptor molecular wires up to 20 nm in length[J]. J. Am. Chem. Soc., 2010,132:16191-16201. doi: 10.1021/ja1060142

    39. [39]

      N. Tuccitto, V. Ferri, M. Cavazzini. Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres[J]. Nat. Mater., 2008,8:41-46.

    40. [40]

      M. Oçafrain, T.K. Tran, P. Blanchard. Electropolymerized self-assembled monolayers of a 3,4-ethylenedioxythiophene-thiophene hybrid system[J]. Adv. Funct. Mater., 2008,18:2163-2171. doi: 10.1002/adfm.v18:15

    41. [41]

      A. Berlin, G. Zotti, G. Schiavon. Adsorption of carboxyl-terminated dithiophene and terthiophene molecules on ITO electrodes and their electrochemical coupling to polymer layers. The influence of molecular geometry[J]. J. Am. Chem. Soc., 1998,120:13453-13460. doi: 10.1021/ja9824728

    42. [42]

      R.L. McCarley, R.J. Willicut. Tethered monolayers of poly((N-pyrrolyl)alkanethiol) on Au[J]. J. Am. Chem. Soc., 1998,120:9296-9304. doi: 10.1021/ja981677d

    43. [43]

      J.S. Lee, Y.S. Chi, I.S. Choi. Local scanning probe polymerization of an organic monolayer covalently grafted on silicon[J]. Langmuir, 2012,28:14496-14501. doi: 10.1021/la302526t

    44. [44]

      S. Kuwabata, R. Fukuzaki, M. Nishizawa. Electrochemical formation of a polyaniline-analogue monolayer on a gold electrode[J]. Langmuir, 1999,15:6807-6812. doi: 10.1021/la981719b

    45. [45]

      Z. Gao, S.S. Kok, S.O.C. Hardy. Self-assembled conducting polymer monolayers of poly(3-octylthiophene) on gold electrodes[J]. Synth. Met., 1995,75:5-10. doi: 10.1016/0379-6779(95)03384-V

    46. [46]

      Z. Gao, K.S. Siow. Ultramicroelectrode ensembles based on self-assembled polymeric monolayers on gold electrodes[J]. Electrochim. Acta, 1997,42:315-321. doi: 10.1016/0013-4686(96)00187-9

    47. [47]

      D. Yang, M. Zi, B. Chen. Separation of pinhole and tunneling electron transfer processes at self-assembled polymeric monolayers on gold electrodes[J]. J. Electroanal. Chem., 1999,470:114-119. doi: 10.1016/S0022-0728(99)00216-8

    48. [48]

      Y. Shimoyama. Growth process of poly (3-dodecyl thiophene) self-assembled monolayers: FTIR-RAS and gravimetric studies[J]. Thin Solid Films, 2004:403-407-464-465.

    49. [49]

      B. Vercelli, G. Zotti, A. Berlin. Polypyrrole self-assembled monolayers and electrostatically assembled multilayers on gold and platinum electrodes for molecular junctions[J]. Chem. Mater., 2006,18:3754-3763. doi: 10.1021/cm060802e

    50. [50]

      Z. Wang, H. Dong, T. Li. Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions[J]. Nat. Commun., 2015,67478. doi: 10.1038/ncomms8478

    51. [51]

      T. Li, J.R. Hauptmann, Z. Wei. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions[J]. Adv. Mater., 2012,24:1333-1339. doi: 10.1002/adma.201104550

    52. [52]

      T. Li, M. Jevric, J.R. Hauptmann. Ultrathin reduced graphene oxide films as transparent Top-Contacts for light switchable solid-state molecular junctions[J]. Adv. Mater., 2013,25:4164-4170. doi: 10.1002/adma.201300607

    53. [53]

      S. Rigaut. Metal complexes in molecular junctions[J]. Dalton Trans., 2013,42:15859-15863. doi: 10.1039/c3dt51487k

    54. [54]

      W.Y. Wang, T. Lee, M.A. Reed. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices[J]. Phys. Rev. B, 2003,68:21-35.

    55. [55]

      B.S. Kim, J.M. Beebe, C. Olivier. Temperature and length dependence of charge transport in redox-active molecular wires incorporating ruthenium(II) bis(s-arylacetylide) complexes[J]. J. Phys. Chem. C, 2007,111:7521-7526. doi: 10.1021/jp068824b

    56. [56]

      C. Musumeci, G. Zappalà, N. Martsinovich. Nanoscale electrical investigation of layer-by-layer grown molecular wires[J]. Adv. Mater., 2014,26:1688-1693. doi: 10.1002/adma.201304848

    57. [57]

      V. Kolivoška, M. Valášek, M. Gál. Single-molecule conductance in a series of extended viologen molecules[J]. J. Phys. Chem. Lett., 2013,4:589-595. doi: 10.1021/jz302057m

    58. [58]

      G. Sedghi, K. Sawada, L.J. Esdaile. Single molecule conductance of porphyrin wires with ultralow attenuation[J]. J. Am. Chem. Soc., 2008,130:8582-8583. doi: 10.1021/ja802281c

    59. [59]

      G. Sedghi, V.M. García-Suárez, L.J. Esdaile. Long-range electron tunnelling in oligo-porphyrin molecular wires[J]. Nat. Nanotechnol., 2011,6:517-523. doi: 10.1038/nnano.2011.111

    60. [60]

      Z. Li, T. Park, J. Rawson. Quasi-ohmic single molecule charge transport through highly conjugated meso-to-meso ethyne-bridged porphyrin wires[J]. Nano Lett., 2012,12:2722-2727. doi: 10.1021/nl2043216

    61. [61]

      R.C. Bruce, R. Wang, J. Rawson. Valence band dependent charge transport in bulk molecular electronic devices incorporating highly conjugated multi-[J]. J. Am. Chem. Soc., 2016,138:2078-2081. doi: 10.1021/jacs.5b10772

    62. [62]

      G. Sedghi, L.J. Esdaile, H.L. Anderson. Comparison of the conductance of three types of porphyrin-based molecular wires: b,meso, b-fused tapes, mesobutadiyne-linked and twisted meso-meso linked oligomers[J]. Adv. Mater., 2012,24:653-657. doi: 10.1002/adma.201103109

    63. [63]

      Q. Ferreira, A.M. Bragança, L. Alcácer. Conductance of well-defined porphyrin self-assembled molecular wires up to 14 nm in length[J]. J. Phys. Chem. C, 2014,118:7229-7234. doi: 10.1021/jp501122n

    64. [64]

      J. Jiang, J.R. Smith, Y. Luo. Multidecker bis(benzene)chromium: opportunities for design of rigid and highly flexible molecular wires[J]. J. Phys. Chem. C, 2011,115:785-790. doi: 10.1021/jp109782q

    65. [65]

      A. Calzolari, S.S. Alexandre, F. Zamora. Metallicity in individual MMX chains[J]. J. Am. Chem. Soc., 2008,130:5552-5562. doi: 10.1021/ja800358c

    66. [66]

      W. Hu, H. Nakashima, K. Furukawa. Self-assembled rigid conjugated polymer nanojunction and its nonlinear current-voltage characteristics at room temperature[J]. Appl. Phys. Lett., 2004,85:115-157. doi: 10.1063/1.1769590

    67. [67]

      H. He, J. Zhu, N.J. Tao. A conducting polymer nanojunction switch[J]. J. Am. Chem. Soc., 2001,123:7730-7731. doi: 10.1021/ja016264i

    68. [68]

      Y. Okawa, S.K. Mandal, C. Hu. Chemical wiring and soldering toward allmolecule electronic circuitry[J]. J. Am. Chem. Soc., 2011,133:8227-8233. doi: 10.1021/ja111673x

    69. [69]

      M. Nakaya, Y. Okawa, C. Joachim. Nanojunction between fullerene and onedimensional conductive polymer on solid surfaces[J]. ACS Nano, 2014,8:12259-12264. doi: 10.1021/nn504275b

    70. [70]

      W. Hu, H. Nakashima, K. Furukawa. A self-assembled nano optical switch and transistor based on a rigid conjugated polymer, thioacetyl-end-functionalized poly(para-phenylene ethynylene)[J]. J. Am. Chem. Soc., 2005,127:2804-2805. doi: 10.1021/ja0433929

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    3. [3]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    4. [4]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    5. [5]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    6. [6]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    7. [7]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    8. [8]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    9. [9]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    10. [10]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    11. [11]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    12. [12]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    13. [13]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    14. [14]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    15. [15]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    16. [16]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    17. [17]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    18. [18]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    19. [19]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    20. [20]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

Metrics
  • PDF Downloads(4)
  • Abstract views(766)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return