Citation: Xing-Xing Shen, Guang-Chao Han, Yuan-Ping Yi. Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1453-1463. doi: 10.1016/j.cclet.2016.05.030 shu

Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells

  • Corresponding author: Yuan-Ping Yi, materials.ypyi@iccas.ac.cn
  • Received Date: 3 May 2016
    Revised Date: 24 May 2016
    Accepted Date: 27 May 2016
    Available Online: 4 August 2016

Figures(10)

  • This paper summarizes our recent works on theoretical modelling of molecular packing and electronic processes in small-molecule organic solar cells. Firstly, we used quantum-chemical calculations to illustrate exciton-dissociation and charge-recombination processes at the DTDCTB/C60 interface and particularly emphasized the major role of hot charge-transfer states in the exciton-dissociation processes. Then, we systematically analyzed the influence of DTDCTB surfaces with different features on the vacuum vapor deposition growth and packing morphologies of C60 via atomistic molecular dynamics simulations, and found that the formation of crystalline fullerene is the result of an integrated impact of stability, landscape, and molecular orientation of the substrate surfaces. Also, we investigated the impact of different film-processing conditions, such as solvent evaporation rates and thermal annealing, on molecular packing configurations in a neat small-molecule donor material, DPP(TBFu)2, and discussed the correlation between charge mobility and molecular packing via atomistic simulations in combination with electronic-structure calculations and kinetic Monte Carlo simulations.
  • 加载中
    1. [1]

      S.R. Forrest. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004,428:911-918.

    2. [2]

      B. Kippelen, J.L. Brédas. Organic photovoltaics[J]. Energy Environ. Sci., 2009,2:251-261.

    3. [3]

      G. Li, R. Zhu, Y. Yang. Polymer solar cells[J]. Nat. Photon., 2012,6:153-161.

    4. [4]

      A. Mishra, P. Bäuerle. Small molecule organic semiconductors on the move: promises for future solar energy technology[J]. Angew. Chem. Int. Ed., 2012,51:2020-2067.

    5. [5]

      P. Kumar, S. Chand. Recent progress and future aspects of organic solar cells[J]. Prog. Photovolt. Res. Appl., 2012,20:377-415.

    6. [6]

      Y.W. Su, S.C. Lan, K.H. Wei. Organic photovoltaics[J]. Mater. Today, 2012,15:554-562.

    7. [7]

      S.B. Darling, F.Q. You. The case for organic photovoltaics[J]. RSC Adv., 2013,3:17633-17648.

    8. [8]

      L.Y. Lu, T.Y. Zheng, Q.H. Wu. Recent advances in bulk heterojunction polymer solar cells[J]. Chem. Rev., 2015,115:12666-12731.

    9. [9]

      J.D. Chen, C.H. Cui, Y.Q. Li. Single-junction polymer solar cells exceeding 10% power conversion efficiency[J]. Adv. Mater., 2015,27:1035-1041.

    10. [10]

      Q. Zhang, B. Kan, F. Liu. Small-molecule solar cells with efficiency over 9%[J]. Nat. Photon., 2015,9:35-41.  

    11. [11]

      B. Kan, Q. Zhang, M.M. Li. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%[J]. J. Am. Chem. Soc., 2014,136:15529-15532.

    12. [12]

      B. Kan, M.M. Li, Q. Zhang. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency[J]. J. Am. Chem. Soc., 2015,137:3886-3893.

    13. [13]

      K. Sun, Z.Y. Xiao, S.R. Lu. A molecular nematic liquid crystalline material for high-performance organic photovoltaics[J]. Nat. Commun, 2015,66013.

    14. [14]

      C.H. Cui, X. Guo, J. Min. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments[J]. Adv. Mater., 2015,27:7469-7475.

    15. [15]

      J.L. Brédas, J.E. Norton, J. Cornil, V. Coropceanu. Molecular understanding of organic solar cells: The challenges[J]. Acc. Chem. Res., 2009,42:1691-1699.

    16. [16]

      T.M. Clarke, J.R. Durrant. Charge photogeneration in organic solar cells[J]. Chem. Rev., 2010,110:6736-6767.

    17. [17]

      Y.P. Yi, V. Coropceanu, J.L. Brédas. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: Theoretical insight into the impact of interface geometry[J]. J. Am. Chem. Soc., 2009,131:15777-15783.

    18. [18]

      D. Beljonne, J. Cornil, L. Muccioli. Electronic processes at organic organic interfaces: insight from modeling and implications for opto-electronic devices[J]. Chem. Mater., 2010,23:591-609.  

    19. [19]

      A. Ojala, A. Petersen, A. Fuchs. Merocyanine/C60 planar heterojunction solar cells: effect of dye orientation on exciton dissociation and solar cell performance[J]. Adv. Funct. Mater., 2012,22:86-96.

    20. [20]

      B.P. Rand, D. Cheyns, K. Vasseur. The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction[J]. Adv. Funct. Mater., 2012,22:2987-2995.

    21. [21]

      Z. Guo, D.Y. Lee, R.D. Schaller. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends[J]. J. Am. Chem. Soc., 2014,136:10024-10032.

    22. [22]

      H. Tamura, I. Burghardt. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation[J]. J. Am. Chem. Soc., 2013,135:16364-16367.

    23. [23]

      X.X. Shen, G.C. Han, D. Fan, Y.J. Xie, Y.P. Yi. Hot charge-transfer states determine exciton dissociation in the DTDCTB/C60 complex for organic solar cells: a theoretical insight[J]. J. Phys. Chem. C, 2015,119:11320-11326.

    24. [24]

      G.C. Han, X.X. Shen, Y.P. Yi. Deposition growth and morphologies of C60 on DTDCTB surfaces: An atomistic insight into the integrated impact of surface stability, landscape, and molecular orientation[J]. Adv. Mater. Interfaces, 2015,21500329.

    25. [25]

      A.E. Jailaubekov, A.P. Willard, J.R. Tritsch. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nat. Mater., 2013,12:66-73.  

    26. [26]

      G. Grancini, D. Polli, D. Fazzi. Transient absorption imaging of P3HT:PCBM photovoltaic blend: evidence for interfacial charge transfer state[J]. J. Phys. Chem. Lett., 2011,2:1099-1105.

    27. [27]

      H. Ohkita, S. Cook, Y. Astuti. Charge carrier formation in polythiophene/ fullerene blend films studied by transient absorption spectroscopy[J]. J. Am. Chem. Soc., 2008,130:3030-3042.

    28. [28]

      L.Y. Lin, Y.H. Chen, Z.Y. Huang. A low-energy-gap organic dye for highperformance small-molecule organic solar cells[J]. J. Am. Chem. Soc., 2011,133:15822-15825.

    29. [29]

      Y.H. Chen, L.Y. Lin, C.W. Lu. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization[J]. J. Am. Chem. Soc., 2012,134:13616-13623.

    30. [30]

      X.Z. Che, X. Xiao, J.D. Zimmerman, D.J. Fan, S.R. Forrest. High-efficiency, vacuumdeposited, small-molecule organic tandem and triple-junction photovoltaic cells[J]. Adv.[31_TD$DIF]Energy Mater., 2014,41400568.

    31. [31]

      H.W. Lin, Y.H. Chen, Z.Y. Huang. Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%[J]. Org. Electron., 2012,13:1722-1728.

    32. [32]

      H.W. Lin, H.W. Kang, Z.Y. Huang. An effective bilayer cathode buffer for highly efficient small molecule organic solar cells[J]. Org. Electron., 2012,13:1925-1929.

    33. [33]

      H.W. Lin, C.W. Lu, L.Y. Lin. Pyridine-based electron transporting materials for highly efficient organic solar cells[J]. J. Mater. Chem. A, 2013,1:1770-1777.

    34. [34]

      A.Y. Chang, Y.H. Chen, H.W. Lin. Charge carrier dynamics of vapor-deposited small-molecule/fullerene organic solar cells[J]. J. Am. Chem. Soc., 2013,135:8790-8793.

    35. [35]

      D. Cheyns, M. Kim, B. Verreet, B.P. Rand. Accurate spectral response measurements of a complementary absorbing organic tandem cell with fill factor exceeding the subcells[J]. Appl. Phys. Lett., 2014,104093302.

    36. [36]

      L. Ye, H.H. Xu, H. Yu. Ternary bulk heterojunction photovoltaic cells composed of small molecule donor additive as cascade material[J]. J. Phys. Chem. C, 2014,118:20094-20099.

    37. [37]

      S. Nunomura, X.Z. Che, S.R. Forrest. Charge trapping in mixed organic donor-acceptor semiconductor thin films[J]. Adv. Mater., 2014,26:7555-7560.

    38. [38]

      H.S. Shim, F. Lin, J. Kim. Efficient vacuum-deposited tandem organic solar cells with fill factors higher than single-junction subcells[J]. Adv.[31_TD$DIF]Energy Mater., 2015,51500228.

    39. [39]

      O.L., X.Liu, J.A., etal.. Charge transport and excitondissociation in organic solar cells consisting of dipolar donors mixed with C70[J]. Phys. Rev. B, 2015,92085404.

    40. [40]

      Y. Huang, E.J. Kramer, A.J. Heeger, G.C. Bazan. Bulk heterojunction solar cells: morphology and performance relationships[J]. Chem. Rev., 2014,114:7006-7043.

    41. [41]

      Y. Zhou, T. Taima, T. Kuwabara, K. Takahashi. Efficient small-molecule photovoltaic cells using a crystalline diindenoperylene film as a nanostructured template[J]. Adv. Mater., 2013,25:6069-6075.

    42. [42]

      J.D. Zimmerman, X. Xiao, C.K. Renshaw. Independent control of bulk and interfacial morphologies of small molecular weight organic heterojunction solar cells[J]. Nano Lett., 2012,12:4366-4371.

    43. [43]

      B. Song, C. Rolin, J.D. Zimmerman, S.R. Forrest. Effect of mixed layer crystallinity on the performance of mixed heterojunction organic photovoltaic cells[J]. Adv. Mater., 2014,26:2914-2918.  

    44. [44]

      N.C. Miller, E. Cho, M.J.N. Junk. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymerfullerene bimolecular crystal[J]. Adv. Mater., 2012,24:6071-6079.

    45. [45]

      L. Muccioli, G. D'Avino, C. Zannoni. Simulation of vapor-phase deposition and growth of a pentacene thin film on C60(001)[J]. Adv. Mater., 2011,23:4532-4536.

    46. [46]

      G. D'Avino, L. Muccioli, C. Zannoni. From chiral islands to smectic layers: a computational journey across sexithiophene morphologies on C60[J]. Adv. Funct. Mater., 2015,25:1985-1995.

    47. [47]

      R.A. Cantrell, C. James, P. Clancy. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers[J]. Langmuir, 2011,27:9944-9954.

    48. [48]

      Y.T. Fu, C. Risko, J.L. Brédas. Intermixing at the pentacene-fullerene bilayer interface: a molecular dynamics study[J]. Adv. Mater., 2013,25:878-882.

    49. [49]

      Y.T. Fu, D.A. da Silva Filho, G. Sini. Structure and disorder in squaraine-C60 organic solar cells: a theoretical description of molecular packing and electronic coupling at the donor-acceptor interface[J]. Adv. Funct. Mater., 2014,24:3790-3798.

    50. [50]

      T. Liu, D.L. Cheung, A. Troisi. Structural variability and dynamics of the P3HT/ PCBM interface and its effects on the electronic structure and the charge-transfer rates in solar cells[J]. Phys. Chem. Chem. Phys., 2011,13:21461-21470.

    51. [51]

      G.C. Han, X.X. Shen, R.H. Duan, H. Geng, Y.P. Yi. Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu)2[J]. J. Mater. Chem. C, . doi: 10.1039/C6TC01201A

    52. [52]

      B. Walker, A.B. Tamayo, X.D. Dang. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells[J]. Adv. Funct. Mater., 2009,19:3063-3069.

    53. [53]

      A. Viterisi, F. Gispert-Guirado, J.W. Ryan, E. Palomares. Formation of highly crystalline and texturized donor domains in DPP(TBFu)2:PC71BM SM-BHJ devices via solvent vapour annealing: implications for device function[J]. J. Mater. Chem., 2012,22:15175-15182.

    54. [54]

      A. Sharenko, M. Kuik, M.F. Toney, T.Q. Nguyen. Crystallization-induced phase separation in solution-processed small molecule bulk heterojunction organic solar cells[J]. Adv. Funct. Mater., 2014,24:3543-3550.

    55. [55]

      J.H. Liu, Y. Zhang, H. Phan. Effects of stereoisomerism on the crystallization behavior and optoelectrical properties of conjugated molecules[J]. Adv. Mater., 2013,25:3645-3650.

    56. [56]

      E.F. Valeev, V. Coropceanu, D.A. da Silva Filho, S. Salman, J.L. Bredas. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors[J]. J. Am. Chem. Soc., 2006,128:9882-9886.

    57. [57]

      A.A. Voityuk, N. Rösch. Fragment charge difference method for estimating donoracceptor electronic coupling: application to DNA[32_TD$DIF]pi-stacks[J]. J. Chem. Phys., 2002,117:5607-5616.

    58. [58]

      R.J. Cave, M.D. Newton. Generalization of the Mulliken-Hush treatment for the calcualtion of electron transfer matrix elements[J]. Chem. Phys. Lett., 1996,249:15-19.

    59. [59]

      Q. Wu, T. Van Voorhis. Direct optimization method to study constrained systems within density-functional theory[J]. Phys. Rev. A, 2005,72024502.

    60. [60]

      J. Ridley, M. Zerner. An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines[J]. Theor. Chim. Acta, 1973,32:111-134.

    61. [61]

      K. Nishimoto, N. Mataga. Electronic structure and spectra of some nitrogen heterocycles[J]. Z. Phys. Chem., 1957,12:335-338.

    62. [62]

      N. Mataga, K. Nishimoto. Electronic structure and spectra of nitrogen heterocycles[J]. Z. Phys. Chem., 1957,13:140-157.

    63. [63]

      R.A. Marcus. Electron transfer reactions in chemistry. Theory and experiment[J]. Rev. Mod. Phys., 1993,65:599-610.

    64. [64]

      G.J. Nan, X.D. Yang, L.J. Wang, Z.G. Shuai, Y. Zhao. Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene[J]. Phys. Rev. B, 2009,79115203.

    65. [65]

      S.W. Yin, L.L. Li, Y.M. Yang, J.R. Reimers. Challenges for the accurate simulation of anisotropic charge mobilities through organic molecular crystals: the (phase of mer-Tris (8-hydroxyquinolinato)aluminum(III) (Alq3) crystal[J]. J. Phys. Chem. C, 2012,116:14826-14836.

    66. [66]

      M.H. Lee, B.D. Dunietz, E. Geva. Calculation from first principles of intramolecular golden-rule rate constants for photo-induced electron transfer in molecular donor-acceptor systems[J]. J. Phys. Chem. C, 2013,117:23391-23401.

    67. [67]

      J. Jortner. Temperature dependent activation energy for electron transfer between biological molecules[J]. J. Chem. Phys., 1976,64:4860-4867.

    68. [68]

      A. Nitzan, J. Jortner. Effects of vibrational relaxation on molecular electronic transitions[J]. J. Chem. Phys., 1973,58:2412-2434.

    69. [69]

      A. Warshel, M. Levitt. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme[J]. J. Mol. Biol., 1976,103:227-249.

    70. [70]

      T. Liu, A. Troisi. Absolute rate of charge separation and recombination in a molecular model of the P3HT/PCBM interface[J]. J. Phys. Chem. C, 2011,115:2406-2415.

    71. [71]

      S. Di Motta, E. Di Donato, F. Negri. Resistive molecular memories: influence of molecular parameters on the electrical bistability[J]. J. Am. Chem. Soc., 2009,131:6591-6598.

    72. [72]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010,132154104.

    73. [73]

      I. Akimoto, M. Ashida, K. Kan'no. Luminescence from C60 single crystals in glassy phase under site-selective excitation[J]. Chem. Phys. Lett., 1998,292:561-566.

    74. [74]

      C.K. Lee, C.W. Pao. Nanomorphology evolution of P3HT/PCBM blends during solution-processing from coarse-grained molecular simulations[J]. J. Phys. Chem. C, 2014,118:11224-11233.

    75. [75]

      L.J. Wang, O.V. Prezhdo, D. Beljonne. Mixed quantum-classical dynamics for charge transport in organics[J]. Phys. Chem. Chem. Phys., 2015,17:12395-12406.

    76. [76]

      L.J. Wang, R. Long, O.V. Prezhdo. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces[J]. Annu. Rev. Phys. Chem., 2015,66:549-579.

    77. [77]

      R.M. Pinto, E.M.S. Maçôas, A.I.S. Neves. Effect of molecular stacking on exciton diffusion in crystalline organic semiconductors[J]. J. Am. Chem. Soc., 2015,137:7104-7110.

    78. [78]

      V. Rühle, A. Lukyanov, F. May. Microscopic simulations of charge transport in disordered organic semiconductors[J]. J. Chem. Theory Comput., 2011,7:3335-3345.

    79. [79]

      M. Williams, N.R. Tummala, S.G. Aziz, C. Risko, J.L. Brédas. Influence of molecular shape on solid-state packing in disordered PC61BM and PC71BM fullerenes[J]. J. Phys. Chem. Lett., 2014,5:3427-3433.

    80. [80]

      B.M. Savoie, K.L. Kohlstedt, N.E. Jackson. Mesoscale molecular network formation inamorphousorganic materials[J]. Proc.Natl.Acad. Sci, 2014,111:10055-10060.

    81. [81]

      Z. Li, X. Zhang, Y. Zhang. Hole transport in diketopyrrolopyrrole (DPP) small molecules: a joint theoretical and experimental study[J]. J. Phys. Chem. C, 2013,117:6730-6740.

    82. [82]

      V.D. Mihailetchi, J. Wildeman, P.W.M. Blom. Space-charge limited photocurrent[J]. Phys. Rev. Lett., 2005,94126602.

    83. [83]

      A., J., D., C., V. A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions,[J]. Adv. Mater., 2012,24:4381-4386.

    84. [84]

      C.M. Proctor, J.A. Love, T.Q. Nguyen. Mobility guidelines for high fill factor solution-processed small molecule solar cells[J]. Adv. Mater., 2014,26:5957-5961.

    85. [85]

      A.B. Tamayo, X.D. Dang, B. Walker. A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells[J]. Appl. Phys. Lett., 2009,94103301.

    86. [86]

      L.J. Wang, Q.K. Li, Z.G. Shuai, L.P. Chen, Q. Shi. Multiscale study of charge mobility of organic semiconductor with dynamic disorders[J]. Phys. Chem. Chem. Phys., 2010,12:3309-3314.

    87. [87]

      L.J. Wang, G.J. Nan, X.D. Yang. Computational methods for design of organic materials with high charge mobility[J]. Chem. Soc. Rev., 2010,39:423-434.

    88. [88]

      S. Canola, F. Negri. Anisotropy of the n-type charge transport and thermal effects in crystals of a fluoro-alkylated naphthalene diimide: a computational investigation[J]. Phys. Chem. Chem. Phys., 2014,16:21550-21558.

    89. [89]

      C.X. Zhao, S. Xiao, G. Xu. Density of organic thin films in organic photovoltaics[J]. J. Appl. Phys., 2015,118044510.

  • 加载中
    1. [1]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    4. [4]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    6. [6]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    7. [7]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    8. [8]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    9. [9]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    12. [12]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    16. [16]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    17. [17]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    18. [18]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    19. [19]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    20. [20]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return