Citation: Chun-Rui Wang, Yong-Yang Gong, Wang-Zhang Yuan, Yong-Ming Zhang. Crystallization-induced phosphorescence of pure organic luminogens[J]. Chinese Chemical Letters, ;2016, 27(8): 1184-1192. doi: 10.1016/j.cclet.2016.05.026 shu

Crystallization-induced phosphorescence of pure organic luminogens

Figures(10)

  • This review summarizes the recent progress of efficient room temperature phosphorescence (RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence (CIP), with focus on the advances in our group. Besides homocrystals, mixed crystals and cocrystals are also discussed. Meanwhile, intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.
  • 加载中
    1. [1]

      (a) S.K. Lower, M.A. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev. 66(1966) 199-241; (b) C.J. Fischer, A. Gafni, D.G. Steel, J.A. Schauerte, The triplet-state lifetime of indole in aqueous and viscous environments: significance to the interpretation of room temperature phosphorescence in proteins, J. Am. Chem. Soc. 124(2002) 10359-10366.

    2. [2]

      (a) Y.G. Ma, H.Y. Zhang, J.C. Shen, C.M. Che, Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (b) M.A. Baldo, D.F. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154.

    3. [3]

      D. Lee, J. Jung, D. Bilby. A novel optical ozone sensor based on purely organic phosphor[J]. ACS Appl. Mater. Interfaces, 2015,7:2993-2997. doi: 10.1021/am5087165

    4. [4]

      (a) Q.L.M. de Chermont, C. Chanéac, J. Seguin, et al., Nanoprobes with nearinfrared persistent luminescence for in vivo imaging, Proc. Natl. Acad. Sci. U. S. A. 104(2007) 9266-9271; (b) Q. Zhao, C.H. Huang, F.Y. Li, Phosphorescent heavy-metal complexes for bioimaging, Chem. Soc. Rev. 40(2011) 2508-2524.

    5. [5]

      G.Q. Zhang, G.M. Palmer, M.W. Dewhirst, C.L. Fraser. A dual-emissivematerials design concept enables tumour hypoxia imaging[J]. Nat. Mater., 2009,8:747-751. doi: 10.1038/nmat2509

    6. [6]

      Y.H. Deng, D.X. Zhao, X. Chen. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem. Commun., 2013,49:5751-5753. doi: 10.1039/c3cc42600a

    7. [7]

      (a) P.X. Liang, D. Wang, Z.C. Miao, et al., Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives, Chin. Chem. Lett. 25(2014) 237-242; (b) P.Z. Chen, H.R. Zheng, L.Y. Niu, et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY, Chin. Chem. Lett. 26(2015) 631-635; (c) C.C. Wang, S.Y. Yan, Y.Q. Chen, et al., Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells, Chin. Chem. Lett. 26(2015) 323-328.

    8. [8]

      (a) R. Shrivastava, J. Kaur, Studies on long lasting optical properties of Eu2+ and Dy3+ doped di-barium magnesium silicate phosphors, Chin. Chem. Lett. 26(2015) 1187-1190; (b) B. Wang, H. Lin, J. Xu, et al., Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7: Pr3+, Inorg. Chem. 54(2015) 11299-11306; (c) V.W.W. Yam, V.K.M. Au, S.Y.L. Leung, Light-emitting self-assembled materials based on d8 and d10 transition metal complexes, Chem. Rev. 115(2015) 7589-7728.

    9. [9]

      S. Reineke, M.A. Baldo. Room temperature triplet state spectroscopy of organic semiconductors[J]. Sci. Rep., 2014,43797.  

    10. [10]

      (a) E.B. Asafu-Adjaye, S.Y. Su, Mixture analysis using solid substrate room temperature luminescence, Anal. Chem. 58(1986) 539-543; (b) S. Scypinski, L.J.C. Love, Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins, Anal. Chem. 56(1984) 322-327; (c) D. Levy, D. Avnir, Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol-gel glasses, J. Photochem. Photobiol. A 57(1991) 41-63; (d) G.Q. Zhang, J.B. Chen, S.J. Payne, et al., Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence, J. Am. Chem. Soc. 129(2007) 8942-8943.

    11. [11]

      W.Z. Yuan, X.Y. Shen, H. Zhao. Crystallization-induced phosphorescence of pure organic luminogens at room temperature[J]. J. Phys. Chem. C, 2010,114:6090-6099. doi: 10.1021/jp909388y

    12. [12]

      (a) J.D. Luo, Z.L. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741; (b) W.Z. Yuan, P. Lu, S.M. Chen, et al., Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state, Adv. Mater. 22(2010) 2159-2163; (c) J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: together we shine, united we soar, Chem. Rev. 115(2015) 11718-11940.

    13. [13]

      O. Bolton, K. Lee, H.J. Kim, K.Y. Lin, J. Kim. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat. Chem., 2011,3:205-210.  

    14. [14]

      (a) M.A. El-Sayed, Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics, J. Phys. Chem. 38(1963) 2834-2838; (b) M.A. El-Sayed, Triplet state. Its radiative and nonradiative properties, Acc. Chem. Res. 1(1968) 8-16.

    15. [15]

      H.F. Shi, Z.F. An, P.Z. Li. Enhancing organic phosphorescence by manipulating heavy atom interaction[J]. Cryst. Growth Des., 2016,16:808-813. doi: 10.1021/acs.cgd.5b01400

    16. [16]

      G.P. Yong, Y.M. Zhang, W.L. She, Y.Z. Li. Stacking-induced white-light and bluelight phosphorescence from purely organic radical materials[J]. J. Mater. Chem., 2011,21:18520-18522. doi: 10.1039/c1jm14690d

    17. [17]

      Y.Y. Gong, Y.Q. Tan, H. Li. Crystallization-induced phosphorescence of benzils at room temperature[J]. Sci. China Chem., 2013,56:1183-1186. doi: 10.1007/s11426-013-4930-9

    18. [18]

      Y.Y., L.F., Q.Peng, etal.. Crystallization-induced dualemission from metaland heavy atom-free aromatic acids and esters[J]. Chem. Sci., 2015,6:4438-4444. doi: 10.1039/C5SC00253B

    19. [19]

      (a) S. Hirata, K. Totani, J.X. Zhang, et al., Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions, Adv. Funct. Mater. 23(2013) 3386-3397; (b) Z.F. An, C. Zheng, Y. Tao, et al., Stabilizing triplet excited states for ultralong organic phosphorescence, Nat. Mater. 14(2015) 685-690; (c) C.Y. Li, X. Tang, L.Q. Zhang, et al., Reversible luminescence switching of an organic solid: controllable on-off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion, Adv. Opt. Mater. 3(2015) 1184-1190; (d) Z.Y. Yang, Z. Mao, X.P. Zhang, et al., Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence, Angew. Chem. Int. Ed. 55(2016) 2181-2185.

    20. [20]

      (a) P.C. Xue, J.B. Sun, P. Chen, et al., Luminescence switching of a persistent roomtemperature phosphorescent pure organic molecule in response to external stimuli, Chem. Commun. 51(2015) 10381-10384; (b) X.P. Zhang, T.Q. Xie, M.X. Cui, et al., General design strategy for aromatic ketone-based single-component dual-emissive materials, ACS Appl. Mater. Interfaces 6(2014) 2279-2284.

    21. [21]

      Y.Y. Gong, G. Chen, Q. Peng. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens[J]. Adv. Mater., 2015,27:6195-6201. doi: 10.1002/adma.201502442

    22. [22]

      Y.Y. Gong, Y.Q. Tan, J. Mei. Room temperature phosphorescence from natural products: crystallization matters[J]. Sci. China Chem., 2013,56:1178-1182. doi: 10.1007/s11426-013-4923-8

    23. [23]

      A. Fermi, G. Bergamini, R. Peresutti. Molecular asterisks with a persulfurated benzene core are among the strongest organic phosphorescent emitters in the solid state[J]. Dyes Pigments, 2014,110:113-122. doi: 10.1016/j.dyepig.2014.04.036

    24. [24]

      G. He, W. Torres Delgado, D.J. Schatz. Coaxing solid-state phosphorescence from tellurophenes[J]. Angew. Chem. Int. Ed., 2014,53:4587-4591. doi: 10.1002/anie.201307373

    25. [25]

      M. Shimizu, A. Kimura, H. Sakaguchi. Room-temperature phosphorescence of crystalline 1, 4-bis (aroyl)-2, 5-dibromobenzenes[J]. Eur. J. Org. Chem., 2016,2016:467-473. doi: 10.1002/ejoc.201501382

    26. [26]

      S. Maity, P. Mazumdar, M. Shyamal, G.P. Sahoo, A. Misra. Crystal induced phosphorescence from benz(a)anthracene microcrystals at room temperature[J]. Spectrochim. Acta Part A, 2016,157:61-68. doi: 10.1016/j.saa.2015.12.002

    27. [27]

      (a) H.Y. Gao, X.R. Zhao, H. Wang, X. Pang, W.J. Jin, Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C-I…π halogen bonding, Cryst. Growth Des. 12(2012) 4377-4387; (b) Q.J. Shen, H.Q. Wei, W.S. Zou, H.L. Sun, W.J. Jin, Cocrystals assembled by pyrene and 1,2-or 1, 4-diiodotetrafluorobenzenes and their phosphorescent behaviors modulated by local molecular environment, CrystEngComm 14(2012) 1010-1015; (c) H.Y. Gao, Q.J. Shen, X.R. Zhao, et al., Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C-I…π halogen bonding, J. Mater. Chem. 22(2012) 5336-5343; (d) Q.J. Shen, X. Pang, X.R. Zhao, et al., Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C-I…π halogen bonding and other assisting weak interactions, CrystEngComm 14(2012) 5027-5034.

    28. [28]

      S. d'Agostino, F. Grepioni, D. Braga, B. Ventura. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals[J]. Cryst. Growth Des., 2015,15:2039-2045. doi: 10.1021/acs.cgd.5b00226

    29. [29]

      kr and knr are the rate constants for radiative (phosphorescence) and nonradiative deactivations from the T1 state, respectively, and kq is the rate constant based on quenching of the triplet excitons by interaction with the surroundings such as oxygen and humidity.

    30. [30]

      G.M. Brown, H.A. Levy. α-D-Glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis[J]. Science, 1965,147:1038-1039.  

  • 加载中
    1. [1]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    2. [2]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    3. [3]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    4. [4]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    5. [5]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    6. [6]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    7. [7]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    10. [10]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    11. [11]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    12. [12]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    13. [13]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    14. [14]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    15. [15]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    16. [16]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    17. [17]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    18. [18]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    19. [19]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    20. [20]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

Metrics
  • PDF Downloads(7)
  • Abstract views(722)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return