Citation: Li Qi-Feng, Wang Chao, Lan Xiao-Zheng. Solid-solid phase transition of (1-C14H29NH3)2ZnCl4 in nanopores of silica gel for thermal energy storage[J]. Chinese Chemical Letters, ;2017, 28(1): 49-54. doi: 10.1016/j.cclet.2016.05.024 shu

Solid-solid phase transition of (1-C14H29NH3)2ZnCl4 in nanopores of silica gel for thermal energy storage

  • Corresponding author: Lan Xiao-Zheng, lanxzh@sdau.edu.cn
  • Received Date: 29 March 2016
    Revised Date: 19 May 2016
    Accepted Date: 23 May 2016
    Available Online: 4 January 2016

Figures(6)

  • Latent heat storage performance of a layered perovskite-type compound, 1-C14H29NH3)2ZnCl4 (C14Zn), embedded in a series of silica gel (SG) with pore sizes of d=15-200 nm is investigated using differential scanning calorimetry (DSC), and powder X-ray diffractions (XRD). C14Zn in the nanopores of silica gel shows size-dependent phase transition temperature, enthalpy change and supercooling. They have a stable transition temperature and heat capacity at each size in a short-term thermal cycling. Similar Xray diffraction patterns are observed for the nano-sized and the bulk C14Zn. The encapsulation of a phase change material in nanopores is a new way of tuning its thermal energy storage properties for a wider range of temperature regulation.
  • 加载中
    1. [1]

      Zalba B., Mar J.M., Cabeza L.F., Mehling H.. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications[J]. Appl. Therm. Eng., 2003,23:251-283. doi: 10.1016/S1359-4311(02)00192-8

    2. [2]

      Al-Abidi A.A., Mat S.B., Sopian K.. Review of thermal energy storage for air conditioning systems[J]. Renew. Sust. Energy Rev., 2012,16:5802-5819. doi: 10.1016/j.rser.2012.05.030

    3. [3]

      Chen Z., Shan F., Cao L., Fang G.Y.. Synthesis and thermal properties of shapestabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage[J]. Sol. Energy Mater. Sol. Cells, 2012,102:131-136. doi: 10.1016/j.solmat.2012.03.013

    4. [4]

      Rathod M.K., Banerjee J.. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J]. Renew. Sust. Energy Rev., 2013,18:246-258. doi: 10.1016/j.rser.2012.10.022

    5. [5]

      Marks S.B.. The effect of crystal size on the thermal energy storage capacity of thickened Glauber's salt[J]. Sol. Energy, 1983,30:45-49. doi: 10.1016/0038-092X(83)90005-1

    6. [6]

      Lu D.F., Di Y.Y., Dou J.M.. Crystal structures and solid-solid phase transitions on phase change materials (1-CnH2n+1NH3)2CuCl4(s) (n=10 and 11)[J]. Sol. Energy Mater. Sol. Cells, 2013,114:1-8. doi: 10.1016/j.solmat.2013.02.009

    7. [7]

      Guo L.L., Liu H.X., Dai Y.D., Ouyang S.X.. Preparation and characterization of the layered hybrids (CnH2n+1NH3)2FeCl4[J]. J. Phys. Chem. Solids, 2007,68:1663-1673. doi: 10.1016/j.jpcs.2007.04.008

    8. [8]

      Zhang J., Wang S.S., Zhang S.D.. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2solid nanobowls toward smart heat storage[J]. J. Phys. Chem. C, 2011,115:20061-20066. doi: 10.1021/jp202373b

    9. [9]

      Kousksou T., Jamil A., ElRhafiki T., Zeraouli Y.. Paraffin wax mixtures as phase change materials[J]. Sol. Energy Mater. Sol. Cells, 2010,94:2158-2165. doi: 10.1016/j.solmat.2010.07.005

    10. [10]

      Kousksou T., Bruel P., Jamil A., ElRhafiki T., Zeraouli Y.. Energy storage:applications and challenges[J]. Sol. Energy Mater. Sol. Cells, 2014,120:59-80. doi: 10.1016/j.solmat.2013.08.015

    11. [11]

      Gao C.F., Wang L.P., Li Q.F.. Tuning thermal properties of latent heat storage material through confinement in porous media:the case of (1-CnH2n+1NH3)2ZnCl4(n=10 and 12)[J]. Sol. Energy Mater. Sol. Cells, 2014,128:221-230. doi: 10.1016/j.solmat.2014.05.019

    12. [12]

      Cui W.Z., Wu K.Z., Liu X.D., Wen L.Q., Ren B.Y.. Subsolidus binary phase diagram of the perovskite type layer materials (n-CnH2n+1NH3)2ZnCl4(n=10, 12, 14)[J]. Thermochim. Acta, 2011,521:80-83. doi: 10.1016/j.tca.2011.04.008

    13. [13]

      Khare S., Dell'Amico M., Knight C., McGarry S.. Selection of materials for high temperature latent heat energy storage[J]. Sol. Energy Mater. Sol. Cells, 2012,107:20-27. doi: 10.1016/j.solmat.2012.07.020

    14. [14]

      Cao L., Tang F., Fang G.Y.. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2014,123:183-188. doi: 10.1016/j.solmat.2014.01.023

    15. [15]

      Zhang Q.L., Zhao Y.Q., Feng J.C.. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials[J]. Sol. Energy Mater. Sol. Cells, 2013,118:54-60. doi: 10.1016/j.solmat.2013.07.035

    16. [16]

      Dosseh G., Xia Y.D., Alba-Simionesco C.. Cyclohexane and benzene confined in MCM-41 and SBA-15:confinement effects on freezing and melting[J]. J. Phys. Chem. B, 2003,107:6445-6453. doi: 10.1021/jp034003k

    17. [17]

      Li Y.J., Qi W.H., Li Y., Janssens E., Huang B.Y.. Modeling the size-dependent solid-solid phase transition temperature of Cu2S nanosolids[J]. J. Phys. Chem. C, 2012,116:9800-9804. doi: 10.1021/jp3003307

    18. [18]

      Sandoval L., Urbassek H.M.. Finite-size effects in Fe-nanowire solid-solid phase transitions:a molecular dynamics approach[J]. Nano Letters, 2009,9:2290-2294. doi: 10.1021/nl9004767

    19. [19]

      Tabuchi Y., Asai K., Rikukawa M., Sanui K., Ishigure K.. Preparation and characterization of natural lower dimensional layered perovskite-type compounds[J]. J. Phys. Chem. Solids, 2000,61:837-845. doi: 10.1016/S0022-3697(99)00402-3

    20. [20]

      Jackson C.L., McKenna G.B.. The melting behavior of organic materials confined in porous solids[J]. J. Chem. Phys., 1990,93:9002-9011. doi: 10.1063/1.459240

    21. [21]

      Landi E., Vacatello M.. Metal-dependent thermal behavior Ln (n-CnH2n+1NH3)2MCl4[J]. Thermochim. Acta, 1975,13:441-447. doi: 10.1016/0040-6031(75)85084-2

    22. [22]

      Wu K.Z., Zhang J.J.. Subsolidus binary phase diagram of (n-CnH2n+1NH3)2ZnCl4(n=14, 16, 18)[J]. J. Therm. Anal. Calorim., 2010,101:913-917. doi: 10.1007/s10973-010-0806-9

    23. [23]

      Cheng Zhi-Lin, Sun Wei. Preparation of nano-CuO-loaded halloysite nanotubes with high catalytic activity for selective oxidation of cyclohexene[J]. Chin. Chem. Lett., 201601.

    24. [24]

      Ricard L., Rey-Lafon M., Biran C.. Vibrational study of the dynamics of n-decylammonium chains in the perovskite-type layer compound decylammoniumte-trachlorocadmate ((C10H21NH3)2CdCl4)[J]. J. Phys. Chem., 1984,88:5614-5620. doi: 10.1021/j150667a031

    25. [25]

      Coasne B., Czwartos J., Sliwinska-Bartkowiak M., Gubbins K.E.. Freezing of mixtures confined in silica nanopores:experiment and molecular simulation[J]. J. Chem. Phys., 2010,133084701. doi: 10.1063/1.3464279

    26. [26]

      Hawa T., Zachariah M.R.. Internal pressure and surface tension of bare and hydrogen coated silicon nanoparticles[J]. J. Chem. Phys., 2004,121:9043-9049. doi: 10.1063/1.1797073

    27. [27]

      Montenegro R., Antonietti M., Mastai Y., Landfester K.. Crystallization in miniemulsion droplets[J]. J. Phys. Chem. B, 2003,107:5088-5094. doi: 10.1021/jp0262057

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    3. [3]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    4. [4]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    5. [5]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    6. [6]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    9. [9]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    10. [10]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    11. [11]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    12. [12]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    13. [13]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    14. [14]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    15. [15]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    16. [16]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

Metrics
  • PDF Downloads(1)
  • Abstract views(671)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return